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Distributed-Directory Scheme: 

Scalable Coherent Interface 
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Gurindar S. Sohi, University of Wisconsin-Madison 

The Scalable Coherent Interface i s  a 
local or extended computer “backplane” 
interface being defined by an IEEE stan- 
dard project (P1596). The interconnection 
i s  scalable, meaning that up to 64K proces- 
sor, memory, or I/O nodes can effectively 
interface to a shared SCI interconnection. 

The SCI committee set high-perform- 
ance design goals of  one gigabyte per sec- 
ondpernode. As aresult, bused backplanes 
have been replaced by unidirectional 

Project status and information sources 
Scalable Coherent Interface. 

Simulation of the coherence protocols 
is now under way at the University of 
Oslo and Dolpin Server Technology in 
Oslo, Norway. The initial SCI simula- 
tion efforts focus on proving the 
specification’s correctness rather 
than calibrating its performance. 

ers (Stein Gjessing. Ellen Munthe- 
Kaas, and Stein Krogdahl) are for- 
mally specifying the intent of the 
cache-coherence protocol and ver- 
ifying that the cache updates pre- 
scribed by the SCI standard are spe- 
cified correctly. 

cube group is now working with the 
SCI group. 

IEEEs SCI-P1596 working group 
plans to freeze the base coherence 
protocols by this summer. The group 
will continue to explore optional co- 
herence extensions to improve the 
performance of frequently occurring 
sharinglist updates. If you have inter- 
ests in this area, please contact the 
SCI-P1596 working group chair: 
David B. Gustavson, Computation 
Research Group, Stanford Linear 
Accelerator Center, PO Box 4349, Bin 

Three University of Oslo research- 

The University of Wisconsin’s multi- 

88, Stanford, CA 94309. Gustavson’s 
phone number is (415) 926-2863, his 
fax number is (415) 961-3530 or 926- 
3329, and his e-mail address is 
dbg@slacvm.bitnet. 

Stanford Distributed Directory. 
A group at Stanford University’s 
Knowledge Systems Laboratory is 
working on simulations to determine 
the performance of their distributed- 
directory scheme using linked lists. 
Further information can be obtained 
from Manu Thapar, Knowledge Sys- 
tems Laboratory, Department of 
Computer Science, Stanford Univer- 
sity, 701 Welch Road, Palo Alto, CA 
94304. Thapar’s phone number is 
(415) 725-3849; his e-mail address is 
manu@ksl.stanford.edu. 

Aquarlus. The Aquarius group is 
evaluating the multi-multi architecture 
by simulation. Further information on 
that project can be obtained from Mi- 
chael Carlton, University of California 
at Berkeley, Division of Computer Sci- 
ence, 571 Evans Hall, Berkeley, CA 
94720. His phone number is (415) 
642-8299, and his e-mail address is 
carlton@ernie.berkeley.edu. 

point-to-point l inks. One set o f  input sig- 
nals and one set o f  output signals are de- 
fined. Packets are sent to the interconnec- 
tion through the output link, and packets 
are returned to the node on the input link. 

Although SCI only defines the interface 
between nodes and the extemal intercon- 
nection, the protocol i s  being validated on 
the least expensive and highest perforn- 
ance interconnection topologies, as illus- 
trated in Figure 1. 

To support arbitrary interconnections, 
the committee abandoned the concept of 
broadcast transactions or eavesdropping 
third parties. Broadcasts are “nearly im- 
possible’’ to route efficiently, according to 
experienced switch designers, and are also 
hard to make reliable. Because of i t s  large 
number of nodes and resulting high cumu- 
lative error rate, reliability and fault recov- 
ery are primary objectives of  SCI. There- 
fore, its cache-coherence protocols are 
based on directed point-to-point transac- 
tions, initiated by a requester (typically the 
processor) and completed by a responder 
(typically a memory controller or another 
processor). 

Sharing-list structures. The SCI co- 
herence protocols are based on distributed 
directories. Each coherently cached block 
i s  entered into a list of processors sharing 
the block. Processors have the option to 
bypass the coherence protocols for locally 
cached data, as illustrated in Figure 2. 

For every block address, the memory 
and cache entries have additional tag bits. 
Part o f  the memory tag identifies the first 
processor in the sharing list (called the 
head); part o f  each cache tag identifies the 
previous and following sharing-list en- 
tries. For a 64-byte cache block, the tags 
increase the size of  memory and cache 
entries by four and seven percent, respec- 
tively, compared to the traditional eaves- 
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dropping alternatives. However, snoopy 
protocols have other hidden costs; they 
require high-performance dual-ported 
cache-tag memories to allow execution of 
processor instructions while eavesdrop- 
ping on other bus activity. 

Sharing-list additions. Initially, mem- 
ory is in the uncached state and cached 
copies are invalid. A read-cached transac- 
tion is directed from the processor to the 
memory controller. This changes the 
memory state from uncached to cached and 
returns the requested data. The data is re- 
turned and the requester’s cache-entry 
state is changed from the invalid to the 
head state. 

For subsequent accesses, the memory 
state is cached, and the head of the sharing 
list has the (possibly dirty) data. A new 
requester (Cache A) directs its read-cached 
transaction to memory, but receives a 
pointer to Cache B instead of the requested 
data. A second cache-to-cache transaction, 
called prepend, is directed from Cache A to 
Cache B. On receiving the request, Cache 
B sets its backward pointer to point to 
Cache A and returns the requested data, as 
illustrated in Figure 3. 

The dotted arrow in Figure 3 illustrates 
a transaction directed between the proces- 
sor (the requester) and memory or another 
processor (the responder). The solid line 
illustrates the sharing-list pointers. Note 
that memory cannot always forward the 
request directly to Cache B - that would 
create potential deadlocking dependen- 
cies. 

Unlike the central-directory schemes, 
request transactions are never blocked at 
the memory controller; instead, all re- 
quests are immediately prepended to the 
head of the existing sharing list. Requests 
are added in FIFO order, as defined by the 
arrival of coherent requests at the memory 
controller. 

Sharing-list removals. The head of the 
list has the authority to purge other entries 
to obtain an exclusive (and therefore 
modifiable) entry. The initial transaction 
to the second sharing-list entry purges that 
entry from the sharing list and returns its 
forward pointer. The forward pointer is 
used to purge the next (previously the 
third) sharing-list entry. The process con- 
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Figure 1. Scalable Coherent Interface (SCI) interconnection models. 
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Figure 2. Distributed cache tags. 
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Figure 3. Sharing-list additions. 

I (1) Purge second entry 

(To memory) (2) Purge next entry 

Figure 4. Head purging other entries. 

tinues until the tail entry is reached, as 
illustrated in Figure 4. As an option, the 
purges can be forwarded directly through 

the sharing-list entries. 
Note that purge latencies increase line- 

arly with the number of sharing readers. 
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Figure 5. Optimized direct-memory-access reads. 
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Figure 6. Request combining. 

Since purge list sizes are often small, the 
linear latencies may be acceptable in many 
configurations. 

Entries can also delete themselves from 
the list when they are needed to cache other 
block addresses. Since the linked list is 
distributed and doubly linked, multiple 
entries can delete themselves simultane- 
ously. Special precedence rules are ap- 
plied to avoid corruption of pointers when 

adjacent deletions are initiated simultane- 
ously. To ensure forward progress, the 
entry closest to the tail has priority and is 
deleted first. 

Standard optimizations. The basic 
coherence-protocol operations have been 
optimized to improve the performance of 
frequent events. We are considering other, 
more complex optimizations to improve 

the performance of large system configu- 
rations. These compatible extensions to 
the basic coherence protocols will be in- 
cluded as part of the SCI standard. 

An optimized direct-memory-access 
controller generates read-check transac- 
tions to fetch its data from memory. If the 
addressed location is clean, the data is 
retumed directly from memory; otherwise, 
the processor is redirected to the current 
sharing-list head. Thus, the DMA control- 
ler can fetch its data without joining the 
sharing list, as illustrated in Figure 5 .  

The frequent one-writer/one-reader 
(producer/consumer) form of data sharing 
is optimized. The invalidation of the writer 
(head) and the data fetches of the reader 
(tail) are both performed as direct cache- 
to-cache transactions between the head and 
tail of an established sharing list. 

Request combining. One useful feature 
of linked-list coherence is the possibility 
of combining list-insertion requests in the 
interconnection toeliminate hot spots at or 
near heavily shared memory controllers. 
Such hot spots degrade performance not 
only of the requesting processor but also of 
other transactions that share portions of the 
congested connection path. 

While queued in an active switch buffer, 
two requests to the same physical memory 
address (read A and read B) can be com- 
bined. The combining generates one re- 
sponse (status A), which is immediately 
retumed to one of the requesters, and one 
modified request (read A-B), which is 
routed towards memory. Additional re- 
quests (read C) can also be combined with 
the modified request, as illustrated in Fig- 
ure 6. 

Read transactions and add transactions 
(add to previous value) can be combined in 
the interconnection or at the memory con- 
troller’s front end. Coherent-request com- 
bining is simpler than noncoherent fetch- 
and-add combining,l since state need not 
be saved in the interconnection while the 
modified request is being forwarded to 
memory. 

SCI’s optional extensions. The latency 
of distributing data or purges to large 
numbers of readers currently scales line- 
arly with the number of read-sharing pro- 
cessors. We are investigating the use of 
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Figure 7. Redundant sharing-list pointers. 

redundant pointers to reduce these linear 
delays to logarithmic latencies (order 
log(N), where N is the number of read- 
sharing processors). The redundant point- 
ers can be created while the request com- 
bining is being performed, to provide the 
binary tree-like structure illustrated in 
Figure 7. 

The redundant pointers could he used by 
multiple readers, to request early copies of 
heavily shared data, or by a writer, to 
quickly purge stale copies when a new data 
value is written. 

Synchronization. In shared-memory 
architectures, locks are the primary form 
of synchronization for large-scale multi- 
processors and must be handled effi- 
ciently. The SCI options include efficient 
synchronization primitives for large-scale 
multiprocessors. A queued-on-lock-bit 
idea, described by Goodman, Vernon, and 
Woest? provides FIFO access to synchro- 
nization variables. Since linked cache en- 
tries form a queue, little additional hard- 
ware is needed to implement an SCI vari- 
ant of this scheme. The advantage of the 
queued-lock scheme is that (except for 
replacements) lock requests are serviced in 
FIFO order and only O(N) transactions are 
generated. 
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