
Data Diffusion Machine,” Proc. Cache and
Interconnect Workshop, M. Dubois and S.
Thakkar, eds., Kluwer Academic Publish-
ers, Norwell, Mass., 1990.

10. H.A. Goosen and David R. Cheriton. “Pre-
dicting the Performance of Shared Multi-
processor Caches,” Proc. Cache and Inrer-
connect Workshop, M. Dubois and S.
Thakkar, eds, Kluwer Academic Publishers,
Norwell, Mass., 1990.

Shreekant Thakkarand Michel Dubois are the
guest editors of this issue of Computer. Their
photographs and biographies appear on p. 11.

Anthony T. Laundrie and Gurindar S . Sohi
are authors of the report on the Scalable Coher-
ent Interface. Their photographs and biogra-
phies appear on p. 77.

Distributed-Directory Scheme:

Scalable Coherent Interface

David V. James, Apple Computer
Anthony T. Laundrie, University of Wisconsin-Madison
Stein Gjessing, University of Oslo
Gurindar S. Sohi, University of Wisconsin-Madison

The Scalable Coherent Interface i s a
local or extended computer “backplane”
interface being defined by an IEEE stan-
dard project (P1596). The interconnection
i s scalable, meaning that up to 64K proces-
sor, memory, or I/O nodes can effectively
interface to a shared SCI interconnection.

The SCI committee set high-perform-
ance design goals of one gigabyte per sec-
ondpernode. As aresult, bused backplanes
have been replaced by unidirectional

Project status and information sources
Scalable Coherent Interface.

Simulation of the coherence protocols
is now under way at the University of
Oslo and Dolpin Server Technology in
Oslo, Norway. The initial SCI simula-
tion efforts focus on proving the
specification’s correctness rather
than calibrating its performance.

ers (Stein Gjessing. Ellen Munthe-
Kaas, and Stein Krogdahl) are for-
mally specifying the intent of the
cache-coherence protocol and ver-
ifying that the cache updates pre-
scribed by the SCI standard are spe-
cified correctly.

cube group is now working with the
SCI group.

IEEEs SCI-P1596 working group
plans to freeze the base coherence
protocols by this summer. The group
will continue to explore optional co-
herence extensions to improve the
performance of frequently occurring
sharinglist updates. If you have inter-
ests in this area, please contact the
SCI-P1596 working group chair:
David B. Gustavson, Computation
Research Group, Stanford Linear
Accelerator Center, PO Box 4349, Bin

Three University of Oslo research-

The University of Wisconsin’s multi-

88, Stanford, CA 94309. Gustavson’s
phone number is (415) 926-2863, his
fax number is (415) 961-3530 or 926-
3329, and his e-mail address is
dbg@slacvm.bitnet.

Stanford Distributed Directory.
A group at Stanford University’s
Knowledge Systems Laboratory is
working on simulations to determine
the performance of their distributed-
directory scheme using linked lists.
Further information can be obtained
from Manu Thapar, Knowledge Sys-
tems Laboratory, Department of
Computer Science, Stanford Univer-
sity, 701 Welch Road, Palo Alto, CA
94304. Thapar’s phone number is
(415) 725-3849; his e-mail address is
manu@ksl.stanford.edu.

Aquarlus. The Aquarius group is
evaluating the multi-multi architecture
by simulation. Further information on
that project can be obtained from Mi-
chael Carlton, University of California
at Berkeley, Division of Computer Sci-
ence, 571 Evans Hall, Berkeley, CA
94720. His phone number is (415)
642-8299, and his e-mail address is
carlton@ernie.berkeley.edu.

point-to-point l inks. One set o f input sig-
nals and one set o f output signals are de-
fined. Packets are sent to the interconnec-
tion through the output link, and packets
are returned to the node on the input link.

Although SCI only defines the interface
between nodes and the extemal intercon-
nection, the protocol i s being validated on
the least expensive and highest perforn-
ance interconnection topologies, as illus-
trated in Figure 1.

To support arbitrary interconnections,
the committee abandoned the concept of
broadcast transactions or eavesdropping
third parties. Broadcasts are “nearly im-
possible’’ to route efficiently, according to
experienced switch designers, and are also
hard to make reliable. Because of i t s large
number of nodes and resulting high cumu-
lative error rate, reliability and fault recov-
ery are primary objectives of SCI. There-
fore, its cache-coherence protocols are
based on directed point-to-point transac-
tions, initiated by a requester (typically the
processor) and completed by a responder
(typically a memory controller or another
processor).

Sharing-list structures. The SCI co-
herence protocols are based on distributed
directories. Each coherently cached block
i s entered into a list of processors sharing
the block. Processors have the option to
bypass the coherence protocols for locally
cached data, as illustrated in Figure 2.

For every block address, the memory
and cache entries have additional tag bits.
Part o f the memory tag identifies the first
processor in the sharing list (called the
head); part o f each cache tag identifies the
previous and following sharing-list en-
tries. For a 64-byte cache block, the tags
increase the size of memory and cache
entries by four and seven percent, respec-
tively, compared to the traditional eaves-

COMPUTER 74

mailto:manu@ksl.stanford.edu
mailto:carlton@ernie.berkeley.edu

dropping alternatives. However, snoopy
protocols have other hidden costs; they
require high-performance dual-ported
cache-tag memories to allow execution of
processor instructions while eavesdrop-
ping on other bus activity.

Sharing-list additions. Initially, mem-
ory is in the uncached state and cached
copies are invalid. A read-cached transac-
tion is directed from the processor to the
memory controller. This changes the
memory state from uncached to cached and
returns the requested data. The data is re-
turned and the requester’s cache-entry
state is changed from the invalid to the
head state.

For subsequent accesses, the memory
state is cached, and the head of the sharing
list has the (possibly dirty) data. A new
requester (Cache A) directs its read-cached
transaction to memory, but receives a
pointer to Cache B instead of the requested
data. A second cache-to-cache transaction,
called prepend, is directed from Cache A to
Cache B. On receiving the request, Cache
B sets its backward pointer to point to
Cache A and returns the requested data, as
illustrated in Figure 3.

The dotted arrow in Figure 3 illustrates
a transaction directed between the proces-
sor (the requester) and memory or another
processor (the responder). The solid line
illustrates the sharing-list pointers. Note
that memory cannot always forward the
request directly to Cache B - that would
create potential deadlocking dependen-
cies.

Unlike the central-directory schemes,
request transactions are never blocked at
the memory controller; instead, all re-
quests are immediately prepended to the
head of the existing sharing list. Requests
are added in FIFO order, as defined by the
arrival of coherent requests at the memory
controller.

Sharing-list removals. The head of the
list has the authority to purge other entries
to obtain an exclusive (and therefore
modifiable) entry. The initial transaction
to the second sharing-list entry purges that
entry from the sharing list and returns its
forward pointer. The forward pointer is
used to purge the next (previously the
third) sharing-list entry. The process con-

June 1990

(Passive rino)

Nodes

interconnection options I
~

Figure 1. Scalable Coherent Interface (SCI) interconnection models.

Processors

Execution
unit
Cache

Coherent sector 0 Noncoherent sector

Figure 2. Distributed cache tags.

I (2) Prepend

(1) Read-cached

Before Afler

Figure 3. Sharing-list additions.

I (1) Purge second entry

(To memory) (2) Purge next entry

Figure 4. Head purging other entries.

tinues until the tail entry is reached, as
illustrated in Figure 4. As an option, the
purges can be forwarded directly through

the sharing-list entries.
Note that purge latencies increase line-

arly with the number of sharing readers.

75

(2) Get-copy

(1) Readdma

Before After

Figure 5. Optimized direct-memory-access reads.

0 -

I
I

Read A-

Figure 6. Request combining.

Since purge list sizes are often small, the
linear latencies may be acceptable in many
configurations.

Entries can also delete themselves from
the list when they are needed to cache other
block addresses. Since the linked list is
distributed and doubly linked, multiple
entries can delete themselves simultane-
ously. Special precedence rules are ap-
plied to avoid corruption of pointers when

adjacent deletions are initiated simultane-
ously. To ensure forward progress, the
entry closest to the tail has priority and is
deleted first.

Standard optimizations. The basic
coherence-protocol operations have been
optimized to improve the performance of
frequent events. We are considering other,
more complex optimizations to improve

the performance of large system configu-
rations. These compatible extensions to
the basic coherence protocols will be in-
cluded as part of the SCI standard.

An optimized direct-memory-access
controller generates read-check transac-
tions to fetch its data from memory. If the
addressed location is clean, the data is
retumed directly from memory; otherwise,
the processor is redirected to the current
sharing-list head. Thus, the DMA control-
ler can fetch its data without joining the
sharing list, as illustrated in Figure 5 .

The frequent one-writer/one-reader
(producer/consumer) form of data sharing
is optimized. The invalidation of the writer
(head) and the data fetches of the reader
(tail) are both performed as direct cache-
to-cache transactions between the head and
tail of an established sharing list.

Request combining. One useful feature
of linked-list coherence is the possibility
of combining list-insertion requests in the
interconnection toeliminate hot spots at or
near heavily shared memory controllers.
Such hot spots degrade performance not
only of the requesting processor but also of
other transactions that share portions of the
congested connection path.

While queued in an active switch buffer,
two requests to the same physical memory
address (read A and read B) can be com-
bined. The combining generates one re-
sponse (status A), which is immediately
retumed to one of the requesters, and one
modified request (read A-B), which is
routed towards memory. Additional re-
quests (read C) can also be combined with
the modified request, as illustrated in Fig-
ure 6.

Read transactions and add transactions
(add to previous value) can be combined in
the interconnection or at the memory con-
troller’s front end. Coherent-request com-
bining is simpler than noncoherent fetch-
and-add combining,l since state need not
be saved in the interconnection while the
modified request is being forwarded to
memory.

SCI’s optional extensions. The latency
of distributing data or purges to large
numbers of readers currently scales line-
arly with the number of read-sharing pro-
cessors. We are investigating the use of

COMPUTER 76

I (Towards head) (tail) I

(Fast purging *) (4- Fast reads or adds)

Figure 7. Redundant sharing-list pointers.

redundant pointers to reduce these linear
delays to logarithmic latencies (order
log(N), where N is the number of read-
sharing processors). The redundant point-
ers can be created while the request com-
bining is being performed, to provide the
binary tree-like structure illustrated in
Figure 7.

The redundant pointers could he used by
multiple readers, to request early copies of
heavily shared data, or by a writer, to
quickly purge stale copies when a new data
value is written.

Synchronization. In shared-memory
architectures, locks are the primary form
of synchronization for large-scale multi-
processors and must be handled effi-
ciently. The SCI options include efficient
synchronization primitives for large-scale
multiprocessors. A queued-on-lock-bit
idea, described by Goodman, Vernon, and
Woest? provides FIFO access to synchro-
nization variables. Since linked cache en-
tries form a queue, little additional hard-
ware is needed to implement an SCI vari-
ant of this scheme. The advantage of the
queued-lock scheme is that (except for
replacements) lock requests are serviced in
FIFO order and only O(N) transactions are
generated.

Acknowledgments
The IEEE PI596 Scalable Coherent Interface

project was started as a study group, under the
name of SuperBus, by Paul Sweazey. Dave
Gustavson is now the chair and is responsible
for the continuing development efforts. Others
initially or currently involved with the cache-
coherence issues include Knut Alnes, Jim
Goodman, Marit Jensen, Emst Kristiansen,
Stein Krogdahl, John Moussouris, Ellen Mun-
the-Kaas, Alan Smith, and Hans Wiggers.

We would like to acknowledge recent contri-
butions from Jim Goodman and others at the
University of Wisconsin that have simplified
the basic proposals and triggered many of the
SCI project’s continuing investigations.

References

1. G.F. Pfister et al., “The IBM Research Par-
allel Processor Prototype (RP3): Introduc-
tion and Architecture,” Proc. lnt’l Conf
Parallel Processing, Computer Society
Press, Los Alamitos, Calif., Order No. 637
(microfiche only), 1985, pp. 764-771.

2. J.R. Goodman, M.K. Vernon, and P.J.
Woest, “Efficient Synchronization Primi-
tives for Large-scale Cache-Coherent
Multiprocessors,” Proc. ASPLOS Ill, Com-
puter Society Press, Los Alamitos, Calif.,
Order No. 1936, 1989, pp. 64-75.

David V. James, a research scientist at Apple
Computer, is a major participant in several IEEE
busstandards.HeisthechairoftheIEEEP1212
CSR Architecture working group as well as a
member of the directly affected bus standards
(IEEE P896.2-Futurebus+. P1596-SC1, and
P1394-Serialbus). His research interest is scal-
able interconnection architectures, from low-
cost mouse interfaces to high-performance
massively parallel processors.

James holds BS and MS degrees in electrical
engineering and a PhD degree in electrical
engineering and computer science from the
Massachusetts Institute of Technology. He is a
member of IEEE, ACM, Eta Kappa Nu, and Tau
Beta Pi.

Anthony T. Laundrie received the BSEE and
MSEE degrees in 1987 and 1990 from the Uni-
versity of Wisconsin-Madison. The past four
years have been spent writing design automa-
tion software and integrating memory hardware
for the Astronautics ZS-1 minisupercomputer.

Now back in school at the University of
Wisconsin-Madison, he is studying memory
architectures for high-performance systems in
greater detail. Laundrie is a member of IEEE,
Eta Kappa Nu, Tau Beta Pi, and Phi Kappa Phi.

Stein Gjessing is an associate professor at the
University of Oslo, Norway. He is presently
head of the Department of Informatics. His re-
search interests are in concurrent programming,
operating systems, and formal specification and
verification of computer programs. His work on
SCI is supported by the Norwegian Research
Council NTNF.

Gjessing received his PhD in computer sci-
ence from the University of Oslo in 1985.

Gurindar S. Sohi has been with the Computer
Sciences Department at the University of Wis-
consin-Madison since September 1985. He is
currently an assistant professor. His interests are
in computer architecture, parallel and distrib-
uted processing. and fault-tolerant computing.

Sohi received his BE degree, with honors, in
electrical engineering from the Birla Institute of
Science and Technology, Pilani, India, in 1981
and the MS and PhD degrees in electrical engi-
neering from the University of Illinois, Urbana-
Champaign, in 1983 and 1985.

77 June 1990

