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Abstract

Sequentialconsisteng (SC) is the simplestprogram-
ming interface for shared-memorysystemsbut imposes
programorderamongall memoryoperationspossiblypre-
cluding high performancemplementationsReleasecon-
sisteny (RC), however, enablesthe highestperformance
implementationgut putsthe burdenon the programmeto
specifywhich memoryoperationsieedto beatomicandin
programordet This papershaws, for thefirst time, thatSC
implementationgan perform aswell as RC implementa-
tionsif the hardware providesenoughsupportfor specula-
tion. Both SC andRC implementationsgely on reordering
andoverlappingmemoryoperationdor high performance.
To enforceorder when necessaryan RC implementation
usessoftware guaranteeswhereasan SC implementation
relies on hardware speculation.Our SC implementation,
called SC++, closesthe performancegap because(l) the
hardwareallows not just loads,assomecurrentSCimple-
mentationslo, but alsostoreso bypassachotherspecula-
tively to hide remotelatencies,(2) the hardware provides
large speculatie statefor not just processqraspreviously
proposedput alsomemoryto allow out-of-ordermemory
operations(3) the supportfor hardware speculationdoes
not add excessve overheadgo processoipipeline critical
paths,and (4) well-behaed applicationsincur infrequent
rollbacks of speculatie execution. Using simulation, we
shav that SC++achievesan RC implementatiors perfor-
mance in all the six applications we studied.

1 Introduction

Multiprocessorsare becomingwidely available in all
sectorof the computingmarket from desktopgo high-end
seners. To simplify programmingmultiprocessorsmary
vendorsmplementsharednemoryasthe primary system-
level programmingabstraction.To achieze high perfor-
mance the shared-memongbstractions typically imple-
mentedin hardware.Shared-memorgystemsomewith a
variety of programminginterfaces—alscknown as mem-
ory consisteng models—ofering a trade-of betweerpro-
gramming simplicity and high performance.

Sequentialconsisteng (SC) is the simplestand most
intuitive programming interface [9]. An SC-compliant
memorysystemappears$o executememoryoperationne
atatime in programorder SC’s simple memorybehaior
is what programmeroften expectfrom a shared-memory

multiprocessobecausef its similarity to the familiar uni-
processomemorysystem.Traditionally, SCis believedto
preclude high performance because corventional SC
implementations would conseratively impose order
amongall memoryoperationsto satisfy the requirements
of themodel.Suchimplementationsvould beprohibitively
slow especially in distributed shared memory (DSM)
where remote memory accessesan take several times
longer than local memory accesses.

To mitigate performancempactof long lateng opera-
tionsin sharednemoryandto realizetheraw performance
of the hardware, researcherand systemdesignershave
inventedseveral relaxed memorymodels[3,2,6]. Relaed
memory models significantly improve performanceover
conventional SC implementationgy requiring only some
memoryoperationgo performin programorder By other-
wise overlappingsomeor all other memory operations,
relaxed modelshide muchof the memoryoperationslong
latencies.Rela>ed models, however, complicatethe pro-
gramminginterface by burdeningthe programmerswith
the details of annotatingmemory operationsto specify
which operations musiecute in program order

Modern microprocessoremploy aggressie instruction
executionmechanism#o extractlargerlevelsof instruction
level parallelism(ILP) andreduceprogramexecutiontime.
To maximizelLP, thesemechanismsllow instructionsto
executeboth speculatiely and out of programorder The
ILP mechanismshbuffer the speculatie state of such
instructionsto maintainsequentiakemanticaipona mis-
speculationor an exception. The ILP mechanismshave
reopenedthe debateaboutthe memory models because
they enableSC implementationgo relax speculatrely the
memory order and yet appearto executememory opera-
tions atomically and in program order [5,14,7].

An aggressie SC implementationcan speculatiely
performall memoryoperationsn a processocache.Such
an implementatiorrolls backto the ‘‘sequentially-consis-
tent” memorystateif anothemprocessors aboutto obsere
thatthe modelconstraintsareviolated(e.g.,a storeby one
processotto a memoryblock loadedspeculatrely out of
orderby another).In the absencef frequentrollbacks,an
SCimplementationcan performpotentiallyaswell asthe
best of relaxed models—ReleaseConsisteng (RC)—
becausdt emulatesan RC implementatiors behaior in
every other aspect.



Gharachorloeet al., [5] first madethe obsenration that
exploiting ILP mechanismsallows optimizing SC’s per-
formance.Their proposedechniquesare implementedn
HP PA-8000, Intel PentiumPro,andMIPS R10000.Ran-
ganatharetal., re-evaluatedhesetechnique$13] andpro-
posed further optimizations [14] but concludedthat a
significant gap between SC and RC implementations
remainsfor someapplicationsandidentified someof the
factorscontributing to the difference.Hill [7], however,
arguesthatwith currenttrendstowardslargerlevelsof on-
chip integration, sophisticatedmicroarchitecturainnova-
tion, andlarger cachesthe performancegap betweenthe
memory models shouldrentually \anish.

This paperconfirmsHill’ s conjectureby shaving, for
the first time, that an SC implementationcan performas
well as an RC implementationif the hardware provides
enoughsupportfor speculation.The key obsenation is
that both SC and RC implementationgely on reordering
and overlappingmemoryoperationsto achieve high per-
formance . While RC implementationgprimarily usesoft-
ware guaranteeso enforce program order only when
necessarySC implementationsely on hardware specula-
tion to provide the guaranteeSolong ashardware specu-
lation enablesSC implementationgo relax all memory
ordersspeculatrely and “emulate” RC implementations,
SCimplementationsanreachRC implementationsper-
formance.Any shortcomingin the hardware supportfor
speculationprevents SC implementationsrom reaching
RC implementations’ performance.

In this paper we identify the fundamentahrchitectural
andapplicationrequirement&nablingan SCimplementa-
tion to perform as well as RC implementations:

¢ Full-fledgedspeculationHardware shouldallow both
loadsand storesto bypasseachother speculatiely to
avoid stoppingthe instructionflow throughthe proces-
sor pipeline. Current techniques[14,5] allow only
loadsto bypasspendingloadsandstoresspeculatiely;
storesare not allowed to bypassothermemoryopera-
tions. We presentnovel mechanismsto allow both
loadsandstoresto bypasseachotherspeculatrely and
yet appearto executememory operationsin program
order

¢ Largespeculatie state:Hardwareshouldprovide large
enoughspeculatre statefor both processoandmem-
ory to allow out-of-order operationsto hide long
remotelatenciesWithout studyingthe requiredsize of
speculatre state for processoror memory previous
studiesproposedextensionsto the re-orderbuffer for
speculatre processorstate[14], but did not provide
ary supportfor speculatre memorystatebeyond con-
ventionalload/storequeuesWe quantify the required
sizeof speculatre statefor processoandmemory and
provide speculatie state supportfor both processor
and memory

* Fastcommoncase:Hardware supportfor speculation
should not introduce overhead (e.g., associatie
searchesjo the executions critical path.Previous pro-
posalsdetectmemory order violation for speculatie
loads[5,14]. We presenfastandefficient mechanisms
to detectmemoryorder violation for both speculatie
loadsandstoreswithout excessie deterioratiorof pro-
cessor pipeline critical paths.

* Infrequentrollbacks:Theapplicationshouldinherently
incur infrequentrollbacksof speculatre execution.We
armgue that well-behaed applications—i.e.,applica-
tions benefittingfrom parallel executionon multipro-
cessors—indeed will not incur frequent rollbacks.
In our performanceevaluation, we assumeaggressie

remote caching mechanismsand a large repository for

remote data as suggestedn most recent proposalsfor

DSMs [10,11,4]. Using simulation of shared-memory

applicationswe shav thatour SC implementationgcalled

SC++, achieves an RC implementatiors performancen

all the six applications we studied.

In Section2, we describethe currentimplementation
optimizationsfor SC and RC. In Section3, we describe
SC++.We presenta qualitative comparisorof currentSC
and RC implementations,and SC++ in Section4. In
Section6, we report experimentalresultsof our simula-
tions, and in Sectior, we drav some conclusions.

2 Current ILP Optimizations

A memoryconsisteng modeldefinesthe programming
interfacefor a shared-memorynachine.Sequentialcon-
sisteny (SC) provides the most intuitive programming
interfaceby requiringthat all memoryoperationsxecute
in programorder To relax SC’s requiremenion ordering
memoryoperationsandincreaseperformanceresearchers
and system designersinvented mary relaxed memory
models. Relaxed memory modelsallow memory opera-
tionsto executeout of programorder but requirethe pro-
grammerto annotatethosememory operationshat must
execute in program order to result in correaaution.

Processorvendorsvary with respectto the memory
modelsthey provide [1]. HP and MIPS both adoptSC as
the primary programmingnterface.Othersprovide a vari-
ety of relaxed modelsvaryingin the extentto which they
relax memory ordering. Intel processorsuse Processor
Consisteng (PC) which allows loads(to one block) fol-
lowing a store(to a differentblock) to executeout of pro-
gram order Sun SFARC processorgprovide Total Store
Order (TSO) which only relaxes store followed by load
orderand enforcesorderamongall othermemoryopera-
tions. Sun SRARC, DEC Alpha, IBM PowerPC,all pro-
vide RC, which is the mostrelaxed memory model. RC
allows memoryoperationgto differentaddressesp exe-
cuteoutof programordet All relaxed modelsincludespe-
cial synchronizatioroperationgo allow specificmemory
operations toxecute atomically and in program order

Corventionalimplementation®of memoryconsisteng
modelsexecutedthe memoryoperationsaccordingto the
models constraint. For instance, SC implementations
would executememory operationsaccordingto the pro-
gram order and one at a time. Modern microprocessors,
however, exploit high degreesof instructionlevel parallel-
ism (ILP) through branch prediction, execute multiple
instructionsper cycle, usenon-blockingcachego overlap
multiple memoryaccesdatencies,and allow instructions
to executeout of order To implementpreciseexceptions
and speculatre executionin accordancewith sequential
semantics,modern microprocessorsuse an instruction
reorderbuffer [15] to rollback and restorethe processor
state on an exception or a misspeculation.Aggressie
implementation®f a memorymodelcanemploy all these
ILP technigueswhich enablememoryoperationgo over-



Register
Files & Reorder
Map Buffer
Tables A
¢ L1 Cache

A ¢ A T
LD/ST ALU ALU L2 invalidations/
¢ i ¢ replacements

FIGURE 1: Speculative execution in current
microprocessors.

lap andexecuteout of orderbut appear to complywith the
memory mode$ constraints [14,5].

2.1 Mechanismsfor Speculative Execution
In this section,we fist describespeculatre instruction

executionusing ILP mechanismsn modernprocessors.

We then presentcurrent memory model optimizations
using theselLP mechanismsWe use the samepipeline
modelasRangnatharet al., [13], which closelyapproxi-
matesthe MIPS R10000pipeline [17]. Figurel depicts
the useof the reorderbuffer (alsoreferredto asan active
windaow, or instructionwindow) to implementspeculatie
executionand preciseexceptionsin modernmicroproces-
sors which issue instructions out of order

Thebranchpredictionandinstructionfetch unit fetches
and issues instructions. Upon issue, instructions are
insertedin the reorder buffer. Upon availability of an
instructions operands,the instructions (architectural)
destinatiorregisteris mappedo a physical registerandis
forwardedto a resenation stationat eachfunctional unit.
The reorderbuffer maintainsthe original programorder
and the register rename mapping for each instruction.
Loadsandstoresareplacedin theload/storequeuewhich
actsasaresenationstationbut alsomaintainshe program
order among memory operationsuntil the accessesre
performed in the cache.

The pipelineforwardsnew registervaluesgeneratedy
instructionsto the resenation stations,andwritesthemto
the reorderbuffer and/orthe physical registers.Instruc-
tionsretire from the headof the reorderbuffer in program
order Upon an exception or branch misprediction, all
instruction entries in the reorder buffer following the
mispredictedranchor the exceptinginstructionarerolled
backandnotallowedto retirefrom thereorderbuffer [15].
Ragisterrename-mapmodifiedby therolled backinstruc-
tions arerestoredandexecutionis restartedat the offend-
ing instruction.

22 SC

In corventional SC implementations,the processor
would faithfully implementSC'’s orderingconstraintsper-
forming memory operationsatomically and in program
order by issuing one memory operationat a time and
blocking on cachemisses Suchanimplementationvould
be prohibitively slow in todays aggressie microproces-
sorsbecausehe processomustissuememaoryoperations

oneatatime andthefirst cachemisswould block boththe
cache and the instructionfichrough the reorderuifer.

Gharachorlocet al., [5] proposedtwo ILP optimiza-
tions to improve sharedmemorys performanceby pre-
venting memoryoperationsrom frequentlyblocking the
reorderbuffer. Several currentSC implementationge.g.,
HP PA 8000,and MIPS R10000)include theseoptimiza-
tions. The ideais to use hardware prefetchingand non-
blocking cachesto overlap fetching and placing cache
blocksin the cache(or fetchingblock ownershiprequests)
for the loads and storesthat are waiting in the reorder
buffer. Upon availability of the blocksin the cache,the
loadsandstoresperformsubsequentlyandquickly) in the
cache Becausehe loadsand storesretire atomicallyand
in programorderfrom the headof the reorderbuffer, the
prefetching optimization does not violate the memory
model. Someimplementationsalso retire pendingstores
from the reorderbuffer but maintainprogramorderin the
load/store queue until thi@are performed.

Current aggressie SC implementationsalso allow
loadsto executespeculatiely out of programorder Spec-
ulative executionallows loadsto producevaluesthat can
be consumedy subsequenhstructionswhile othermem-
ory operationgprecedingthe load in programorder) are
pending.The speculatie load optimizationis basedn the
key obsenationthataslong asotherprocessorin the sys-
temdo notdetectaspeculatiely loadedblock, all memory
operationsappearo have executedatomicallyandin pro-
gram order

To guaranteghe models constraints,the speculatre
load optimizationpreventsotherprocessorsn the system
from observinga speculatie block. It is conseratively
assumedhata speculatrely loadedblock maybe exposed
if it leavesprocessorcaches—e.ggdueto an invalidation
messagdrom or a writebackto the directorynodein dis-
tributed sharedmemory (DSM). Therefore,the caches
must hold a speculatiely loaded block until the load
retires. Upon a cachereplacementsignal from the L2
cachefor a speculatiely loadedblock, however, the pro-
cessorrolls backthe load andall subsequeninstructions
(muchasa branchmisprediction)to restorethe processor
and memory to dsequentially-consisteritstate.

Becausespeculatiely performedloads cannotretire
from the reorderbuffer until all pendingmemoryopera-
tions are performed,a store at the head of the reorder
buffer may block the instructionflow dueto long remote
latenciesBut increasingthe reorderbuffer sizeto accom-
modateremotelatenciesmay slow down processocritical
pathsinvolving associatie searcheghroughthe buffer in a
single cycle [12]. To alleviate this problem, speculatre
retirement[14] moves speculatrely performedioadsand
subsequennstructionsrom theheadof thereorderbuffer
to a separatéistory buffer beforethey retire. The history
buffer maintainsthe informationrequiredto roll back,in
caseof aninvalidationto a speculatrely accessedlock.
Although speculatie retirementnarrons the performance
gap betweenSC and RC implementationsa significant
gap remains in some applications.

Store buffering [6] further enhancesmemory system
performanceédy remaoving pendingstoreinstructionsfrom
the reorder buffer and placing them in the load/store
queue.Relaxed models may realize the full benefitsof
storebuffering by allowing loadsin the reorderbuffer to



bypasspendingstores.In corventional SC implementa-
tions, however, the reorderbuffer stopsretiring instruc-
tions at a load if thereare pendingstoresand therefore,
store buffering may not be as beneficial. Nevertheless,
somecommercialsystems(e.g., HP processorskupport
store luffering for SC.

Both SC and RC implementationgely on reordering
and overlappingmemoryoperationsto achieve high per-
formance.The key differencebetweenSC andRC imple-
mentationss thatwhile RC implementationsisesoftware
guaranteego guide the reorderingand overlapping of
memory operations,SC implementationsuse hardware
speculatiorto reorderandoverlapmemoryoperationsiue
to lack of ary software guaranteesin spite of the above
optimizations,SC implementationsag behindRC imple-
mentations because:

¢ theinability of storesto bypassother memoryopera-
tionsspeculatiely causeheload/storequeueto fill up,
eventually stopping instruction fig

* long lateny remotestorescausethe relatively small
reorderbuffer (or the historybuffer, in the caseof spec-
ulative retirement)andload/storequeueto fill up with
speculatre processorand memory state,respectrely,
stalling the pipeline;

¢ the capacityand conflict missesof small L2 caches
causereplacementsof speculatiely loaded blocks,
resulting in rollbacks.

23 RC

RC modifies the programminginterface to allow the
programmerto specify the ordering constraintsamong
specificmemoryoperationssothatin theabsencef such
constraintsmemory operationscan overlap in ary arbi-
trary order Many microprocessorgrovide specialfence
instructions(e.g., the MEMBAR instructionin SFARC
V9, ortheMB andWMB instructionsin Alpha)to enforce
specificorderingof memoryoperationsvhereser needed.
Typical RCimplementationsisespecialfenceinstructions
atthelowestlevel to enforcememoryordering[6] but pro-
vide higherlevel programmingabstractiongor synchroni-
zation.

Corventional RC implementationsachievzed high per-
formanceprimarily by using store buffering in the load/
store queueto allow loadsand storesto bypasspending
storesandwould maintainprogramorderamongmemory
operationsonly on executinga fenceinstruction.Modern
RC implementationscan additionally take advantageof
hardware prefetchingand non-blocking cachesto fetch
multiple cacheblocks or make block ownershiprequests
(for stores).Unlike SCimplementationsRC implementa-
tions can usebinding prefetchesso that the loadscan be
performedbeforereachingthe headof the reorderbuffer.
Moreover, RC implementationslike SCimplementations,
canalsospeculatiely relax orderingacrossfenceinstruc-
tions and use rollback mechanismsf a memory model
violation is detected by other processors.

3 SC++: SC Programmability with RC
Perfor mance

SC++, our implementationof SC, is basedon the
obseration that SC implementationscan approachRC
implementations’performanceif: (1) the hardware pro-
videsefficient mechanismso relax orderspeculatiely for
not only loads,asdonein [5], but alsostores,(2) the sys-
tem provides enoughspaceto maintainnot only specula-
tive processor state, as proposed in [14], but also
speculatie memorystateof reorderednemoryoperations,
(3) the supportfor speculationdoes not add excessie
overheadto the processompipeline,and (4) rollbacksare
infrequentsothatin the commoncasememoryoperations
executeand completewith no orderingconstraintsmuch
as in RC implementations.

3.1 Speculative Execution in SC++

To fully emulatean RC implementation SC++relaxes
all memoryordersspeculatiely andallow instructionsto
continueto issueandexecuteat full speecevenin thepres-
enceof pendinglong-lateny storeoperationsTo guaran-
tee SC’s constraints, SC++ maintains the state
correspondingto all speculatrely executedinstructions
betweena pending store and subsequentin-program-
order) memory operationsuntil the pending store com-
pletes.If thereis an external coherenceaction (e.g., an
invalidation of speculatiely loadeddataor externalread
of speculatrely stored data) on speculatiely accessed
data,a misspeculatioris flaggedand executionis rolled
back to the instruction that performedthe speculatre
access.Thus, speculatre stateof loadsand storesis not
exposedto the other processorsn the system,much as
speculatie loads are handled if][

Figure? illustratesSC++. SC++supplementshe reor-
der buffer with the Speculatre History Queue(SHIQ) to
maintainthe speculatie statefor storesmuchasspecula-
tive retirementdoesfor loads. The SHiQ removes com-
pletedinstructionsaswell asissuedor readyto issuestore
instructionsfrom the reorderbuffer, allows instructionsto
retireandupdatethe processostateandL1 cachespecula-
tively, and maintainsa preciselog of the modificationsto
enablerolling backandrestoringto the stateconforming
to SC’s constraints.Thus, SC++ performs speculatre
storesto the cacheitself insteadof buffering the storesin
the load/storequeue,avoiding stalls causedoy the filling
up of the storequeuedueto long remotelatencies.Upon
completionof theearliest(in programorder)pendingstore
operationthe hardwaredispose®f all of the SHiQ'’s con-
tentsfrom the headuntil the next pendingstoreoperation.
Sinceloadsare moved to the SHIQ only after they com-
pletein thereorderbuffer, storesaretheonly operationsn
the SHiQ thatmaybe pending;all otherinstructionsin the
SHiQ are (speculately) completed instructions.

When an instructionretiresfrom the reorderbuffer, if
there is a precedingpending store with respectto the
instruction,the hardware insertsa modificationlog at the
endof the SHIQ, recordingthe old architecturaktatethat
the instruction modifies. For instance,for an arithmetic
instruction,thelog maintainghe physicalregisternumber
the old renamingmap (i.e., the map prior to the instruc-
tion’s execution), and the old value of the instructions
destination rgister
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FIGURE 2: SC++ Hardware.

To speculatrely retire store instructionswhile a pre-
cedingprogram-ordesstoreis pending,the hardware per-
forms a read-modify-write cache accessmuch as a
cachable synchronization instruction (e.g., SWAP in
SFARC) in modernmicroprocessordfkead-modify-writes,
however, typically requireanadditionalcycle to accesshe
cache(e.g., RossHyperSRARC). To prevent the slightly
longer accesslateny of a read-modify-write operation
from blocking accessto the cache,the hardware can
employ several well-known bandwidth optimizationsto
theL1 cache Alternatively, by carefullyschedulingspecu-
lative storesthe hardwarecanprioritize cacheaccesseto
allow loadsaccesghe cachewith a higher priority than
speculatre storesand thereby minimize the load-to-use
latengy among instructions.

3.2 Detecting Memory Order Violation

SCmodelrequireghe SC++hardwareto guarante¢hat
relaxingthe memoryorderis not obsered by or exposed
to the restof the system.Our implementation(Figure2)
providesthis guarantedy rolling backall executionstate
whena speculatiely loadedor storedblock is invalidated
(by the DSM homedirectory),read(by a remotenode,in
the caseof speculatiely storeddata),or replaced(dueto
capacityor conflict missesfrom thelowerlevel L2 cache.
In general, such an approachis conserative because
SC++needonly to ensurghataspeculatre block doesnot
leave a DSM node. Recentproposalsfor DSMs with
aggressie remotecachingtechniquegprovide a large spe-
cial-purposeremote accesscacheeither in the network
interface[10], or in both main memoryand the network
interface[11,4]. SC++may limit the rollbacksto the less
frequent case of speculatie blocks leaving the remote
cache.

Upon every invalidation, replacementor downgrade
from L2, the hardware mustdeterminewhetherthe block
has been accessedspeculatiely by a load or store.
Becausdhe SHiQ mustbe large enoughto storethe com-
plete history of instruction execution during a pending
remotememoryoperation,the queuemay be too large to
allow a fastassociatie search.Moreover, there may be
frequentinvalidationsor replacementfrom L2 to blocks
that are not speculatrely accessednecessitatinga fast
lookup.

To provide afastlookup, SC++usesa smallassociatie
buffer, calledthe Block Lookup Table(BLT), to hold alist
of all the uniqueblock addresseaccessedby speculatie
loads and storesin the SHiQ. Unlike currentSC imple-
mentationswhich identify speculatrely loadedblocks by

directly searchingthe reorder buffer and the load/store
queuestheBLT decoupleshesearcimechanismso iden-
tify speculatie blocks from the rollback mechanismsn

the SHIQ that maintainall the speculatie processotand
memorystate.The BLT is basedon the key obsenation
that loads and storesare only a fraction of all executed
instructionsandthereis a high temporalandspatiallocal-

ity in nearneighborload and store instructions.As a
result, a block lookup table can significantly reducethe
search space as compared to the SHiQ.

3.3 Rolling Back Processor & Memory State

SC++mustroll backthe processoandmemorystateto
a “sequentiallyconsistent’stateupon a lookup matchin
the BLT. To guarantegorward progressand avoid live-
locks/deadlocksthe hardware must restoreall processor
and memory stateup to the first instructionin program
order that speculatrely accessedthe matching block.
Restoringthe processorstateinvolves stoppingthe pipe-
line and accessingthe appropriatehardware structures.
Restoringthe speculatrely storeddatarequiresaccesses
to the local cachehierarcly, which may move the data
from the lower levelsto L1, if the speculatie datais dis-
placedfrom L1 to thelower levels.Becausall of thedata
accessetly theinstructionsin the SHiQ areguaranteedo
be presenton the node, restoring the data can proceed
without involving the coherence protocol.

Upon restoring the processorand memory state, the
hardwareinhibits further speculatre retirementof instruc-
tionsinto the SHiQ until all pendingstoreshave beenper-
formed. Such a policy guaranteedorward progressby
allowing the instruction causingthe rollback to execute
and retire (non-speculatiely) in programorder During
rollback, the processoralso inhibits further coherence
message processing teoad deadlocks.

Dependingon the rollback frequeng and the desired
performancein the presenceof frequentrollbacks, the
implementatiorcanoptimizetherollback processA slow
rollback will slow down both the faulting processorand
ary processorsendingcoherencenessaget thefaulting
processarOneway to acceleratéherollbackprocesss to
exploit the processotLP mechanismso roll back multi-
ple instructionsper cycle. Another optimizationincludes
allowing invalidationmessagefor read-onlyblocksto be
immediately serviced eliminating the rollback waiting
time for the responsemessageFor blocks with specula-
tively storeddata,a further optimizationto eliminatethe
waiting time includesrestoringthe requesteddlock first
before the rollback process starts.

4 Qualitative Analysis

The primary differencebetweenRC implementations
andSC++is that RC implementationsely on softwareto
enforcethe memoryordernecessaryo guaranteeorrect-
nesswhereasSC++relieson hardwareto provide sucha
guaranteeWhile RC changesthe programinterface to
relax memory order SC++ employs speculatie mecha-
nismsin hardware.In this section we identify theapplica-
tion and systemcharacteristicshat enableSC++to reach
RC implementations’ performance.

To relax memory orders fully, SC++ must provide
enoughspaceto maintainthe processoandmemorystate



nismsto executeinstructionsspeculatrely. RC implemen-
tationsprimarily relax order by requiring the software to
guaranteecorrect placementof fenceinstructions.SC++
usesextra hardware to relax all ordersspeculatrely and
fully emulate RC implementations.

5 Experimental M ethodology

Table2 presentsthe shared-memoryapplicationswe
usein this studyandthe correspondingnput parameters.
Em3d is a shared-memorymplementationof the Split-C
benchmarkLu (the non-contiguousrersion) radix, ray-
trace, water (thensquarediersion)arefrom the SPLASH-
2 benchmarksuite. Unstructured is a shared-memory
implementatiorof a computationafluid dynamicscompu-
tation using an unstructured mesh.

Application Input Parameters

em3d 8192 nodes, 20% remote
lu 256 by 256 matrix, block 8
radix 512K keys

raytrace teapot

unstructured mesh 2K

water 343 molecules

Potential
for
Relaxing Mechanismsto Order
Orders Guarantee Order Violation
SC loads bypass speculatre eecu- lower
loads and tion using reorder
stores buffer, load/store
gueueandspecula-
tive placement of
data in cache
RC loads and fence instruction, lower
stores bypass | speculatre execu-
each other tionasin SCacross
between fences
fences, loads
bypass loads
and stores
across fences
SC++ || loads and speculatre eecu- higher
stores bypass | tion using reorder
each other buffer, load/store
gueueandspecula-
tive placement of
instructions in
SHIQ, data
addresses in BIL
and data in cache

Table 1: Comparison of implementations.

correspondingo all (out-of-program-orderypeculatiely
executedinstructionswhile a memoryoperationis pend-
ing. The stateincludesthe processocachehierarcly (and
the remotecache)maintainingthe speculatiely accessed
remoteblocks,andthe special-purposbuffers(e.g.,SHIQ
andBLT) maintainingthe modificationlogsfor the specu-
latively executedinstructions.SC++ mustalso provide a
fastmechanisnto detectrollbacksbecausegheremay be
frequentremoteblock replacement®r invalidation mes-
sagesin a communication-intenge application even
thoughrollbacksareinfrequentbecausgrocessorsendto
access dierent memory blocks at avgin time.

Givenall the speculatie state the only impedimentor
SC++to achieve RC implementationsperformancas the
fraction of executiontime lost to rollbacks.Unfortunately
therollback penaltyin SC++may be ratherhigh, because
long latenciesof memoryoperationsreatepotentialfor a
large numberof speculatiely executedinstructions How-
ever, we argue that rollback frequeng in well-behaed
applications is ngligible.

A rollback occurs becausetwo or more processors
simultaneouslyaccessthe sameshared-memonblocks.
Therearethreescenariosn which rollback frequeng can
be high: (1) therearetrue dataracesin the application,(2)
thereis a significantamountof falsesharing,and(3) inev-
itable cacheconflicts. Applicationsfor which a significant
fractionof executiontime is spentaccessinguchdatatyp-
ically do not benefit from parallel execution in DSM
becausehe overheadof communicatingmemory blocks
across the processors dominates)atetion time.

Tablel comparesthe extent to which the memory
model implementationsrelax memory order Current
aggressie SC implementation®nly relax memoryorder
with respecto loadsanduseexisting architecturamecha-

Table 2: Applications and input parameter  s.

We useRSIM, a state-of-the-arDSM simulatordevel-
opedat Rice university, to simulatean eight-nodeDSM.
Every DSM nodeincludesa MIPS R10000lik e processar
first and secondlevel cachesand main memory Table3
shavs the base system configuration parametersused
throughoutthe experimentsunless otherwise specified.
Our application data set sizes are selectedto be small
enoughso asnot to requireprohibitive simulationcycles,
while beinglarge enoughto maintaintheintrinsiccommu-
nication and computationcharacteristicsof the parallel
applications. Woo et al., shav that for most of the
SPLASH-2applicationsthe datasetsprovided have a pri-
maryworking setthatfits in a 16-Kbytecacheg16]. There-
fore, we assume 16-Kbyte (direct-mapped)processor
cachesto compensatdor the small size of the datasets.
We assumdarge L2 cachesas suggestedy recentpro-
posalsfor DSMs[10,4], to eliminatecapacityandconflict
missessothatperformancalifferenceamongthe memory
models is solely due to the intrinsics of the models.

Processor Parameters

CPU
reorder lnffer
Load/store queue

300MHz, 4-issue pernycle
64 instructions
64 instructions

L1 cache
L2 cache

16-Kbyte, direct-mapped
8-Mbyte, 2-vay

L2 fill latengy local
L2 fill latency remote
Cache line size

52 processonycles
133 processoncles
64 bytes

Table 3: Base system configuration.

In our experimentsall the memorymodelimplementa-
tions use non-blockingcaches hardware prefetchingfor
loadsand stores,and speculatie load execution. Neither
the SCnor RC implementatiorusesspeculatie retirement
(i.e., the history buffer). SC++ usesthe SHiQ and BLT.
Rollbacksdueto instructionsn thereorderbuffer take one



cycle to restartexecutionat the offendinginstruction.Any
rollbackdueto instructionsn the SHiQ (for SC++)is per-
formed at the samerate as instructionretirement(i.e., 4
instructions perycle).

6 Results

We start with a performancecomparisonof an SC
implementation,an RC implementation,and SC++ in
Section6.1, which is the main result of this paper We
shawv thatwith unlimited SHiIQ, SC++doesreachthe RC
implementatiors performanceSC++performsaswell as
the RC implementatioreven after limiting the SHIQ to a
finite size. Section6.2 presentsresultson the impact of
network latengy on the relatve performanceof the sys-
tems.Our resultsindicatethat with larger network laten-
cies, SC++ still keepsup with the RC implementation,
albeit using larger speculatie state,even thoughthe gap
between the SC and RC implementationswgro

We shaw thatto closethe performanceyap, SC++must
closelyemulatethe RC implementatiorby overlappingall
memory operationsthat the RC implementationoverlaps
and requiring the entire set of SC++ hardware—alarge
SHiQ with the associatedBLT and a large cache.Future
processodesignsmay have large reorderbuffers, obviat-
ing the needfor the SHIQ and BLT. Section6.3 presents
resultsindicating that increasingthe reorder buffer size
narravs the gap betweerthe SC andRC implementations
for mary applications;the rest of the applicationsstill
require SC++ hardare to close theap.

Our results in Section6.4 indicate that performing
storesin strict programordercausesSC++to be consider-
ably slower thanthe RC implementationconfirming the
need to execute stores speculatrely. Finally, in
Section6.5, we shav that with smaller L2 cachesyoll-
backs due to replacementsof speculatrely accessed
blocks artificially widen the gap betweenthe SCandRC
implementations.

6.1 Base System

In Figure3, we shav the speedupof the RC imple-
mentation SC++usinganinfinitely large SHiQ (shovn as
SC++inf), and SC++ using a 512-entrySHiQ and a 64-
entry BLT (shavn as SC++S512B64)measuredacainst
thebasecaseof the SCimplementationAlthoughboththe
SCandRC implementationgreequippedvith non-block-
ing caches prefetching,and speculatie loads,thereis a
significantgap betweenthe SC and RC implementations.
Ontheaveragethe RCimplementatioris 18%betterthan
the SCimplementationand at most,the RC implementa-
tion is 38% betterthanthe SCimplementationThe main
reasorfor this gapis that, unlike the RC implementation,
the SC implementationcannotretire any memoryopera-
tions pasta pendingstore.The gapis large in the caseof
radix becausestore addresseslependon previous loads,
which stopsthe memory unit from issuing prefetches,
leadingto pipeline stalls for aslong as the entire store
lateng. In the rest of the applications,the gap is less
becauseboth the SC and RC implementationsstall for
loads, making stores less important.

SC++inf performsas well asthe RC implementation.
By allowing storesto bypassother memory operations,
SC++ closely emulatesthe RC implementation,closing
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FIGURE 3: Comparison of SC, RC, and SC++.

This figure compareghe speedup®f the RC implementation
and SC++ normalized to that of the SC implementation.
SC++infcorrespondso aninfinitely large SHiQ andBLT. The
SC++ S512B64 corresponddo SC++ with a SHIQ of 512
instructions and BL of 64 entries.

the performancegap. For all the applicationsthe number
of memoryorderviolationsdueto speculations too small
to have ary effect on werall performance.

For all theapplications SC++S512B64ealizesthefull
benefitsof SC++with aninfinitely large SHiQ. For em3d,
lu, water, and unstructured, a SHiQ with fewer than512
entriessuffices. For radix andraytrace, 512 entrieswere
neededto reachthe performanceof SC++inf. A BLT of
size 64 vas suficient for all applications.

In the caseof raytrace, SC++ performsbetterthanthe
RC implementatiorby a wide mamgin. In this application,
rollbacks in the SHIQ actually result in performance
improvement!Theserollbackscausedy looping readsof
lock variable,preventtheinjection of moremessagesito
the network, reducingboth network andlock contention.
Kagi etal., shavedthatby simply usingexponentialback-
off the performanceof raytrace canbeincreasedwo-fold
[8]. Although SC++doesnot introduceexponentialback-
off, the time taken to restorethe stateon a rollback pro-
duces a similar éct.

6.2 Network Latency

In this section,we study the effect of longer network
lateng on the performanceof the RC implementatiorand
SC++.We increasethe network lateng to four timesthe
remote lateny of the base configuration describedin
Table3. In Figure4, we shav the speedupsf the RC
implementation,SC++ using an infinitely large SHIiQ
(showvn as SC++inf), SC++usinga 512-entrySHiQ anda
64-entryBLT (shavn asSC++S512B64)andSC++using
a 8192-entry SHIQ and a 128-entry BLT (shawvn as
SC++S8192B128jneasuredagainstthe SC implementa-
tion. All the experiments use the longer nenk lateng.

Comparedo the performancegap betweernthe SC and
RC implementationsshovn in Figure3, the gap in
Figure4 is largerfor all theapplicationsOnincreasinghe
network lateng by afactorof four, the gapincrease$rom
18% to 31%, on the average.The RC implementation
hidesthelongernetwork lateng betterthanthe SCimple-
mentationby overlappingmore storelatenciesFor em3d,
raytrace, andunstructured, the overall performanceof the
RC implementation (and the other implementations)
decrease$our-fold whencomparedo the fasternetwork
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FIGURE 4: Impact of network latency.

The figure plots the speedup®f the RC implementationand
SC++normalizedto that of the SCimplementationThe net-
work latengy was increasedfor shovn experiments,to eight
timesthelocal memorylateng. Numbersfollowing the letters
‘S’ and‘B’, in thelegend,correspondo the sizesof the SHIQ
and BLT, respectiely.

usedin Section6.1;for lu, radix, andwater thedecreasén
performanceis only by a factor of two, indicating that
these three applications are less sensitve to remote
lateng.

In spite of the longer network lateng, SC++inf keeps
up with the RC implementationshawving that SC++ can
closelyemulatethe RC implementationachiezing similar
overlapof memoryoperationsNot surprisingly thelonger
network lateny createsa performancegap between
SC++S512B64ndthe RC implementatiorfor radix and
raytrace, indicatingthata 512-entrySHiQ is insuficient

to absorbthe extra latengy of remotememoryoperations.

By increasingthe SHiQ sizeto 8192 entriesandthe BLT
to 128entries,SC++canperformaswell astheRCimple-
mentationfor radix andraytrace. For therestof the appli-
cations the smallerSHiQ andBLT configurationof SC++
performsaswell asthe RC implementationNote thatin
thecaseof raytrace, evenSC++S8192B1280 longerper-
forms better than the RC implementationbecausethe
longernetwork lateny dominateghelock acquisitionpat-
terns.

6.3 Reorder Buffer Size

To determinewhether large reorder buffer sizesin
future ILP processorsvill obviate the SHiQ andBLT, we
studythe effect of increasinghereorderbuffer sizeonthe
performanceof the SC and RC implementations.In
Figure5, we shav the speedup®f the SCandRC imple-
mentationsat reorderbuffer sizesof 64 and 1024instruc-
tions, usingthe SC implementationwith a 64-instruction
reorderbuffer asthe basecase Notethatalthoughboththe
SC and RC implementationsuse non-blocking caches,
hardware prefetching, and speculatre loads, the SC
implementationcannotretire storesout-of-orderbut the
RC implementation can.

With a 64-instructionreorderbuffer, thereis a signifi-
cantperformancegap betweenthe SCandRC implemen-
tations, as already mentionedin Section6.1. Increasing
thereorderbuffer sizeto 1024instructionsthegapshrinks
for all the applications,exceptfor raytrace and unstruc-
tured. Increasingthe reorderbuffer size from 64 to 1024
instructionsshrinksthegapfrom 18%to 14%,ontheaver-
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FIGURE 5: Impact of reorder buffer size.

ThefigurecompareshespeedupsftheRCandSCimplemen-
tations,for 64 and 1024 entry reorderbuffer sizes,normalized
with respecto that of the SCimplementatiorwith a 64-entry
reorder lffer.

age.By hiding morestorelatencieghroughallowing more
timefor prefetchesn alargerreorderbuffer, the SCimple-
mentation performs closer to the RC implementation,
althoughthe RC implementatiors performanceémproves
aswell. Althoughthe gap betweerthe SCandRC imple-
mentationsshrinks on increasingthe reorderbuffer size,
there is still a significant difference in performance
betweerthetwo, suggestinghatthe SC++hardware—the
SHiIQ and BLT—may be requiredto closethe gap com-
pletely.

In the caseof raytrace, increasingthe reorderbuffer
sizehelpsneitherthe SC nor RC implementationA reor-
der buffer of 64 instructionsalreadyexposesthe critical
paththroughraytrace, sothatlargerreorderbuffer sizesdo
not resultin more overlap of memoryoperationsPerfor-
manceof raytrace is mostly determinedoy the time spent
in thecritical sectionsof the program Boththe SCandRC
implementationsoverlap the instructionsin the critical
sectionto the point whereperformances limited by con-
tention for the lock. The RC implementatiors perfor-
mance is better than that of the SC implementation
becausdhe RC implementationexecutesthe critical sec-
tion fasterthan the SC implementation.The RC imple-
mentatiorretiresthe storesin thecritical sectionatafaster
ratethanthe SCimplementationyhile the SCimplemen-
tation incurs higher traffic due to more rollbacks. When
the reorder buffer size is increasedfrom 64 to 1024
instructionsthetotal numberof loadsissuedperprocessor
increasedy 50%in the SCimplementationincreasinghe
traffic significantly

In the caseof unstructured, the gapbetweerthe SCand
RC implementationsgrons on increasingthe reorder
buffer size becausehe numberof rollbacksin the caseof
SC increasesWhen the reorderbuffer size is increased
from 64 to 1024 instructions,the number of rollbacks
increaseby a factor of 35. Theserollbacksincreasethe
traffic in the caseof the SC implementation]eadingto a
wider cap between the SC and RC implementations.

6.4 SHiQ Size and Speculative Stores

In this sectionwe shav theimportanceof alarge SHIQ
andspeculatie storesto enablethe SCimplementatiorto
reachthe RC implementatiors performanceln Figure6,
we shav the speedup®f the RC implementation SC++
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FIGURE 6: Impact of speculative stores.

The figure compareghe speedup®f the RC implementation,
SC++and SC++ without speculatie stores(SC++0),normal-
ized with respect to that of the SC implementation.

using a 512-entry SHiQ and a 64-entry BLT (shavn as
SC++S512B64)SC++usinga 512-entrySHiQ anda 64-
entry BLT without speculatie stores (shawvn as
SC++0S512B64)and SC++usinga 64-entrySHiQ with-
out speculatie stores(shovn as SC++0S64)measured
agpinstthe basecaseof the SC implementationThe RC
implementationand SC++S512B64were comparedin
Section6.1 and are stven here for reference.

Now, we compare SC++S512B64  with
SC++0S512B64which isolatesthe importanceof specu-
lative stores.SC++o canreachthe RC implementatiors
performancdor em3d, lu, unstructured, andwater, which
arenot store-intensie. But for the casesf radix andray-
trace, thereis a significantgap of 9% and 22%, respec-
tively, between the RC implementation and
SC++0S512B6decausef their store-intensie nature.In
thesetwo applications,the absenceof speculatie stores
causes significant performanceloss. Not overlapping
storeswith othermemoryoperationsn SC++oleadsto the
filling up of the load/storequeuewhich, in turn, blocks
instructionissue, exposing the pipeline to remote laten-
cies.

Reducingthe SHIQ size from 512 to 64 entriesin
SC++0 causessignificant performancedegradation for
em3d and radix. The smaller SHIQ size significantly
reducesthe overlap among (non-speculatie) storesand
speculatie loads, which exposesthe pipeline to remote
latenciesIn the casef em3d andradix, performanceof
SC++0S512B64s 7% and 16%, respectrely, betterthan
that of SC++0S64.

6.5 L2 Cache Size

So far, we have comparedthe different implementa-
tions using large L2 cachesfor our simulationsto avoid
ary capacityandconflict missessothat performancedif-
ferencesamongthe memorymodelsare solely dueto the
intrinsic behaior of the models.In this section,we shav
theimportanceof anL2 cachebeinglarge enoughto hold
all thespeculatre stateof the SCimplementationin order
for the SC implementationto reachthe RC implementa-
tion’s performanceln Figure7, we shawv the speedup®f
theRC implementatiorandSC++usinga512-entrySHiQ
anda 64-entryBLT (shavn as SC++S512B64)neasured
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FIGURE 7: Impact of the L2 cache size.

The figure shaws the impact of cachesize on the SCimple-
mentation,RC implementationand SC++ performance.The
L2 cachewas reducedto 4-way 64-Kbyte size for shavn
experiments.The resultswere normalizedwith respectto the
SC implementation.

em3d radix

againstthe basecaseof the SC implementationusing a
64-Kbyte, 4-vay associatie L2 cache.

Therearetwo effectsof a smallerL2 cacheon the per-
formancegap betweenthe SC and RC implementations.
On onehand,the gap maywiden becausehe cacheis not
largeenoughto hold all of the SCimplementatiors specu-
lative state.On the other hand,a smallerL2 cachemay
incur mary load misseswhich slowv down boththe SCand
RC implementationstesultingin a narraver performance
gap betweenthe two. For all the applications,exceptlu
andradix, the higherload miss rate of the 64-Kbyte L2
cachedeggradegperformancef boththe SCandRC imple-
mentations,reducingthe significanceof the differences
betweenthe memoryorderingconstraintsof SC and RC.
Comparedo the performancejapbetweerthe SCandRC
implementationausing the 8-Mbyte L2 cache(Figure3),
thegapbetweerthe SCandRCimplementationsisingthe
64-KbyteL2 cacheis wider for radix becauseonflictson
storesexposegemotelatenciesn the SCimplementation.

In the caseof lu, the striking gap betweenthe SC and
RC implementationausingthe 64-Kbyte L2 cacheis pri-
marily causedby rollbacks due to replacementgdue to
conflict missesin the cache)of speculatiely accessed
blocks. The number of rollbacks due to replacements
increasesnordinately (by a factorof 55,000),comparing
the 64-Kbyte L2 cachewith the 8-Mbyte L2 cache.For
both lu andradix, althoughSC++ performscloserto the
RC implementatiorthanthe SCimplementation SC++is
also sensitie to the rollbacks due to replacements.

7 Conclusions

This papershaws, for thefirst time, that SCimplemen-
tationscan performaswell asRC implementationsf the
hardware provides enoughsupportfor speculationBoth
SCandRC implementationsely on reorderingand over-
lappingmemoryoperationgo achieve high performance.
The key differenceis that while RC implementationgri-
marily usesoftware guaranteeso enforcememorymodel
constraints,SC implementationsrely on full hardware
speculationto provide the guaranteeFull-fledged hard-
ware speculationcanenableSC implementationgo relax
speculatrely all memoryordersand“emulate” RC imple-



mentations,enabling SC implementationsto reach RC
implementations’ performance.

The fundamentabrchitecturaland applicationrequire-
mentsthat enablean SC implementationto perform as
well as an RC implementationare: (1) hardware should
allow bothloadsandstoresto bypasseachotherspecula-
tively to hide long remotelatencies,(2) hardware should
provide large speculatie state,for both processorand
memory to allow out-of-order memory operations,(3)
supportfor hardwarespeculatiorshouldnot addexcessive
overheado processopipelinecritical paths,and(4) roll-
backsof speculatie executionshouldbe infrequent,asis
the case for well-belad applications.

Employing novel microarchitectural mechanisms,
SC++ alleviates the shortcomingsof current SC imple-
mentationsto completely close the performancegap
betweersCandRC implementationsSC++allows specu-
lative bypassingof both loadsand stores,yet appeargo
execute memory operationsatomically and in program
order SC++providesamplespeculatie statefor the pro-
cessorin the Speculatie History Queue(SHiQ), which
supplementghe reorderbuffer, to absorbremoteaccess
latencies.SC++ ensuressuficient speculatie state for
memory by placing speculatie datain the local cache
hierarcly itself andusinga large L2 cache,as suggested
by recent proposalsfor DSMs with aggressie remote
cachingtechniquesSC++ usesthe Block Lookup Table
(BLT) to allow fast lookups of pending speculatie
accesseB the SHIQ, on aninvalidation,dovngradesor a
replacementrom the L2 cache.The SHiQ andBLT help
minimize additional overheadsto the processorpipeline
critical paths.

Our experimentalresultsobtainedby software simula-
tion shav that SC++ achieves an RC implementatiors
performancen all the six applicationswe studied Evenat
longernetwork latencies SC++ cankeepup with the RC
implementationalbeit using larger speculatie state.For
SC++to reachthe RC implementatiors performanceall
the hardware of SC++—alarge SHiQ with the associated
BLT anda large cache—isneeded Simply increasingthe
reorderbuffer size,without usingthe SHiQ or BLT, nar-
rows thegapbetweerthe SCandRC implementationshut
the extra mechanism®f SC++ are requiredto closethe
gap completely Performing stores in program order
causesSSC++to beconsiderablyslover thantheRCimple-
mentation,confirmingthe needto executestoresspecula-
tively. Finally, smallerL2 cachescauserollback due to
replacement®f speculatie blocks, artificially widening
the cap between the SC and RC implementations.
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