
Directorv-Based
Cache Coherence in

Large-scale
Multiprocessors

David Chaiken, Craig Fields, Kiyoshi Kurihara,
and Anant Agarwal

Massachusetts Institute of Technology

n a shared-memory multiprocessor, T the memory system provides access
allows all processors in the system to ob-
serve ongoing memory transactions. If a . . - - -

to the data to be processed and mecha- bus transaction threatens the consistent
nisms for interprocess communication. This addresses state of a locally cached object, the cache
The bandwidth of the memory system the usefulness of controller can take such appropriate action
limits the speed of computation in current as invalidating the local copy. Protocols
high-performance multiprocessors due to shared-data caches in that use this mechanism to ensure coher-

ence are called snoopy protocols because large-scale each cache snoops on the transactions of
the uneven growth of processor and mem-
ory speeds. Caches are fast local memories
that moderate a multiprocessor’s memory- multiprocessors, the other caches.’
bandwidth demands by holding copies of Unfortunately, buses simply don’t have
recently used data, and provide a low- relative merits of thebandwidth tosupportalargenumberof
latency access path to the processor. Be-
cause of locality in the memory access
pattems of multiprocessors, the cache sat-
isfies a large fraction of the processor
accesses, thereby reducing both the aver-
age memory latency and the communica-
tion bandwidth requirements imposed on
the system’s interconnection network.

Caches in a multiprocessing environ-
ment introduce the cache-coherenceprob-
lem. When multiple processors maintain
locally cached copies of a unique shared
memory location, any local modification
of the location can result in a globally
inconsistent view of memory. Cache-co-
herence schemes prevent this problem by

different coherence
schemes, and system-

level methods for
improving directory

efficiency.

maintaining a uniform state for each
cached block of data.

Several of today’s commercially avail-
able multiprocessors use bus-based mem-
ory systems. A bus is a convenient device
for ensuring cache coherence because it

processors. Bus cycle times are restricted
by signal transmission times in multidrop
environments and must be long enough to
allow the bus to “ring out,” typically a few
signal propagation delays over the length
of the bus. As processor speeds increase,
the relative disparity between bus and
processor clocks will simply become more
evident.

Consequently, scalable multiprocessor
systems interconnect processors using
short point-to-point wires in direct or
multistage networks. Communication
along impedance-matched transmission
line channels can occur at high speeds,
providing communication bandwidth that

June 1990 W18-9162/90m600-MOl.WOI~lEEE 49

scales with the number of processors.
Unlike buses, the bandwidth of these net-
works increases as more processors are
added to the system. Unfortunately, such
networks don’t have a convenient snoop-
ing mechanism and don’t provide an effi-
cient broadcast capability.

In the absence of a systemwide broad-
cast mechanism, the cache-coherence
problem can be solved with interconnec-
tion networks using some variant of direc-
tory schemes.* This article reviews and
analyzes this class of cache-coherence
protocols. We use a hybrid of trace-driven
simulation and analytical methods to
evaluate the performance of these schemes
for several parallel applications.

The research presented in this article is
part of our effort to build a high-perfor-
mance large-scale multiprocessor. To that
end, we are studying entire multiprocessor
systems, including parallel algorithms,
compilers, runtime systems, processors,
caches, shared memory, and interconnec-
tion networks. We find that the best solu-
tions to the cache-coherence problem re-
sult from a synergy between a multiproces-
sor’s software and hardware components.

Classification of
directory schemes

A cache-coherence protocol consists of
the set of possible states in the local caches,
the states in the shared memory, and the
state transitions caused by the messages
transported through the interconnection
network to keep memory coherent. To
simplify the protocol and the analysis, our
data block size is the same for coherence
and cache fetch.

A cache-coherence protocol that does
not use broadcasts must store the locations
of all cached copies of each block of shared
data. This list of cached locations, whether
centralized or distributed, is called adirec-
tory. A directory entry for each block of
data contains a number ofpointers to spec-
ify the locations of copies of the block.
Each directory entry also contains a dirty
bit tospecify whetherornot auniquecache
has permission to write the associated
block of data.

The different flavors of directory proto-
cols fall under three primary categories:
full-map directories, limited directories,
and chained directories. Full-map directo-
r i a 2 store enough state associated with
each block in global memory so that every
cache in the system can simultaneously

50

store a copy of any block of data. That is,
each directory entry contains N pointers,
where N is the number of processors in the
system. Such directories can be optimized
to use a single bit pointer. Limited directo-
ries’ differ from full-map directories in
that they have a fixed number of pointers
per entry, regardless of the number of
processors in the system. Chained directo-
ries4 emulate the full-map schemes by
distributing the directory among the
caches.

To analyze these directory schemes, we
chose at least one protocol from each cate-
gory. In each case, we tried to pick the
protocol that was the least complex to
implement in terms of the required hard-
ware overhead. Our method for simplify-
ing a protocol was to minimize the number
of cache states, memory states, and types
of protocol messages. All of our protocols
guarantee sequential consistency, which
LamporP defined to ensure the correct exe-
cution of multiprocess programs.

Full-map directories. The full-map
protocol uses directory entries with one bit
per processor and a dirty bit. Each bit
represents the status of the block in the
corresponding processor’s cache (present
or absent). If the dirty bit is set, then one
and only one processor’s bit is set, and that
processor has permission to write into the
block. A cache maintains two bits of state
per block. One bit indicates whether a
block is valid: the other bit indicates
whether a valid block may be written. The
cache-coherence protocol must keep the
state bits in the memory directory and those
in the caches consistent.

Figure l a illustrates three different
states of a full-map directory. In the first
state, location X is missing in all of the
caches in the system. The second state
results from three caches (C1, C2, and C3)
requesting copies of location X. Three
pointers (processor bits) are set in the entry
to indicate the caches that have copies of
the block of data. In the first two states, the
dirty bit -on the left side of the directory
entry - is set to clean (C), indicating that
no processor has permission to write to the
block of data. The third state results from
cache C3 requesting write permission for
the block. In this final state, the dirty bit is
set to dirty (D), and there is a single pointer
to the block of data in cache C3.

It is worth examining the transition from
the second state to the third state in more
detail. Once processor P3 issues the write
to cache C3, the following events tran-
spire:

(1) Cache C3 detects that the block
containing location X is valid but that the
processor does not have permission to
write to the block, indicated by the block’s
write-permission bit in the cache.

(2) Cache C3 issues a write request to
the memory module containing location X
and stalls processor P3.

(3) The memory module issues invali-
date requests to caches C1 and C2.

(4) Cache C1 and cache C2 receive the
invalidate requests, set the appropriate bit
to indicate that the block containing loca-
tion X is invalid, and send acknowledg-
ments back to the memory module.

(5) The memory module receives the
acknowledgments, sets the dirty bit, clears
the pointers tocaches C1 and C2, and sends
write permission to cache C3.

(6) Cache C3 receives the write permis-
sion message, updates the state in the
cache, and reactivates processor P3.

Note that the memory module waits to
receive the acknowledgments before al-
lowing processor P3 to complete its write
transaction. By waiting for acknowledg-
ments, the protocol guarantees that the
memory system ensures sequential consis-
tency.

The full-map protocol provides a useful
upper bound for the performance of cen-
tralized directory-based cache coherence.
However, it is not scalable with respect to
memory overhead. Assume that the
amount of distributed shared memory in-
creases linearly with the number of
processors N. Because the size of the direc-
tory entry associated with each block of
memory is proportional to the number of
processors, the memory consumed by the
directory is proportional to the size of
memory (O(N)) multiplied by the size of
the directory entry (Q(N)). Thus, the total
memory overhead scales as the square of
the number of processors (e(#)).

Limited directories. Limited directory
protocols are designed to solve the direc-
tory size problem. Restricting the number
of simultaneously cached copies of any
particular block of data limits the growth
ofthedirectory toaconstantfactor.Forour
analysis, we selected the limited directory
protocol proposed.in Agarwal et al.)

A directory protocol can be classified as
Dir,X using the notation from Agarwal et
aL3 The symbol i stands for the number of
pointers, and X is NB for a scheme with no
broadcast and B for one with broadcast. A
full-map scheme without broadcast is rep-
resented as D i rpB. A limited directory

COMPUTER

protocol that uses i<N pointers is denoted
DirtNB. The limited directory protocol is
similar to the full-map directory, except in
the case when more than i caches request
read copies of a particular block of data.

Figure Ib shows the situation when three
caches request read copies in a memory
system with a Dir,NB protocol. In this
case, we can view the two-pointer direc-
tory as a two-way set-associative cache of
pointers to shared copies. When cache C3
requests a copy of location X, the memory
module must invalidate the copy in either
cache C1 or cache C2. This process of
pointer replacement is sometimes called
eviction. Since the directory acts as a set-
associative cache, it must have a pointer
replacement policy. Our protocol uses an
easily implemented pseudorandom evic-
tion policy that requires no extra memory
overhead. InFigure 1 b, the pointer to cache
C3 replaces the pointer to cache C2.

Why might limited directories succeed?
If the multiprocessor exhibits processor
locality in the sense that in any given inter-
val of time only a small subset of all the
processors access a given memory word,
then a limited directory is sufficient to
capture this small “worker-set” of proces-
sors.

Directory pointers in a DirENB protocol
encode binary processor identifiers, so
each pointer requires log#‘ bits of mem-
ory, where N is the number of processors in
the system. Given the same assumptions as
for the full-map protocol, the memory
overhead of limited directory schemes
grows as @(Moa). These protocols are
considered scalable with respect to mem-
ory overhead because the resources re-
quired to implement them grow approxi-
mately linearly with the number of proces-
sors in the system.

Dir,B protocols allow more than i copies
of each block of data to exist, but they
resort to a broadcast mechanism when
more than i cached copies of a block need
to be invalidated. However, interconnec-
tion networks with point-to-point wires do
not provide an efficient systemwide broad-
cast capability. In such networks, it is also
difficult to determine the completion of a
broadcast to ensure sequential consis-
tency. While it is possible to limit some
Dir,B broadcasts to a subset of the system
(see Agarwal et aL3), we restrict our evalu-
ation of limited directories to the Dir,NB
protocols.

Chained directories. Chained directo-
ries, the third option for cache-coherence
schemes that do not utilize a broadcast

June 1990

I , 1

Shared memorv Shared memorv

Figure 1. Three types of directory protocols: (a) three states of a full-map direc-
tory: (b) eviction in a limited directory: and (c) chained directory.

mechanism, realize the scalability of lim-
ited directories without restricting the
number of shared copies of data blocks?
This type of cache-coherence scheme is
called a chained scheme because it keeps
track of shared copies of data by maintain-
ing achainof directory pointers. We inves-
tigated two chained directory schemes.

The simpler of the two schemes imple-
ments a singly linked chain, which is best
described by example (see Figure IC).
Suppose there are no shared copies of loca-
tion X. If processor P1 reads location X,
the memory sends a copy to cache C1,
along with a chain termination (CT)
pointer. The memory also keeps a pointer

to cache C1. Subsequently, when proces-
sor P2 reads location X, the memory sends
a copy to cache C2, along with the pointer
to cache C1. The memory then keeps a
pointer to cache C2. By repeating this step,
all of the caches can cache a copy of loca-
tion X. IfprocessorP3 writes tolocation X,
it is necessary to send a data invalidation
message down the chain. To ensure se-
quential consistency, the memory module
denies processor P3 write permission until
the processor with the chain termination
pointer acknowledges the invalidation of
the chain. Perhaps this scheme should be
called a gossip protocol (as opposed to a
snoopy protocol) because information is

51

~~

Figure 2. Diagram of methodology.

passed from individual to individual,
rather than being spread by covert observa-
tion.

The possibility of cache-block replace-
ment complicates chained directory proto-
cols. Suppose that cache C, through cache
C, all have copies of location X and that
location X and location Y map to the same
(direct-mapped) cache line. If processor P,
reads location Y, it must first evict location
X from its cache. In this situation, two
possibilities exist:

(1) Send a message down the chain to
cache C,.l with a pointer to cache C,+, and
splice Cz out of the chain, or

(2) Invalidate location X in cache Ct+l
through cache Cn.

For our evaluation, we chose the second
scheme because it can he implemented by
a less complex protocol than the first. In
either case, sequential consistency is main-
tained by locking the memory location
while invalidations are in progress.

Another solution to the replacement
problem is to use a doubly linked chain.
This scheme maintains forward and hack-
ward chain pointers for each cached copy
so that the protocol does not have to trav-
erse the chain when there is a cache re-
placement. The doubly linked directory
optimizes the replacement condition at the
cost of a larger average message block size
(due to the transmission of extra directory

pointers), twice the pointer memory in the
caches, and a more complex coherence

Although the chained protocols are more
complex than the limited directory proto-
cols, they are still scalable in terms of the
amount of memory used for the directo-
ries. The pointer sizes grow as the loga-
rithm of the number of processors, and the
number of pointers per cache or memory
block is independent of the number of
processors.

protocol.

Caching only private data. Up to this
point, we have assumed that caches are
allowed to store local copies of shared
variables, thus leading to the cache-consis-
tency problem. An alternative shared
memory method avoids the cache-coher-
ence problem by disallowing caching of
shared data. In our analysis, we designate
this scheme by saying itonlycachesprivate
data. This scheme caches private data,
shared data that is read-only, and instruc-
tions, .while references to modifiable
shared data bypass the cache. In practice,
shared variables must be statically identi-
fied to use this scheme.

Methodology
What is a good performance metric for

comparing the various cache-coherence
schemes? To evaluate the performance of

the memory system, which includes the
cache, the memory, and the interconnec-
tion network, we determine the contrihu-
tion of the memory system to the time
neededtorunaprogramonthesystem.0ur
analysis computes the processor utiliza-
tion, or the fraction of time that each pro-
cessor does useful work. One minus the
utilization yields the fraction of processor
cycles wasted due to memory system de-
lays. The actual system speedup equals the
number of processors multiplied by the
processor utilization. This metric has been
used in other studies of multiprocessor
cache and network performance?

In a multiprocessor, processor utiliza-
tion (and therefore system speedup) is
affected by the frequency of memory refer-
ences and the latency of the memory sys-
tem. The latency (T) of a message through
the interconnection network depends on
several factors, including the network
topology and speed, the number of proces-
sors in the system, the frequency and size
of the messages, and the memory access
latency. The cache-coherence protocol
determines the request rate, message size,
and memory latency. To compute proces-
sor utilization, we need to use detailed
models of cache-coherence protocols and
interconnection networks.

Figure 2 shows an overview of our an-
alysis process. Multiprocessor address
traces generated using three tracing meth-
ods at Stanford University, IBM, and MIT

COMPUTER 52

are run on a cache and directory simulator
that counts the occurrences of different
types of protocol transactions. A cost is
assigned to each of these transaction types
to compute the average processor request
rate, the average network message block
size, and the average memory latency per
transaction. From these parameters, a
model of a packet-switched, pipelined,
multistage interconnection network calcu-
lates the average processor utilization.

Getting multiprocessor address trace
data. The address traces represent a wide
range of parallel algorithms written in
three different programming languages.
The programs traced at Stanford were
written in C; at IBM, in Fortran; and at
MIT, in Mul-T,’ a variant of Multilisp. The
implementation of the trace collector dif-
fers for each of the programming environ-
ments. Each tracing system can theoreti-
cally obtain address traces for an arbitrary
number of processors, enabling a study of
the behavior of cache-coherent machines
much larger than any built to date. Table 1
summarizes general characteristics of the
traces. We will compare the relative per-
formance of the various coherence
schemes individually for each application.

The SA-TSP, MP3D, P-Thor, and Lo-
cusRoute traces were gathered via the
Trap-Bit method using 16 processors. SA-
TSP uses simulated annealing to solve the
traveling salesman problem. MP3D is a 3D
particle simulator for rarified flow. P-Thor
is a parallel logic simulator. LocusRoute is
a global router for VLSI standard cells.
Weber and Gupta* provide a detailed de-
scription of the applications.

Trap-bit (T-bit) tracing for multiproces-
sors is an extension of single-processor
trap-bit tracing. In the single processor
implementation, the processor traps after
each instruction if the trap bit is set, allow-
ing interpretation of the trapped instruc-
tion and emission of the corresponding
memory addresses. Multiprocessor T-bit
tracing extends this method by scheduling
a new process on every trapped instruc-
tion. Once a process undergoes a trap, the
trace mechanism performs several tasks. It
records the corresponding memory ad-
dresses, saves the processor state of the
trapped process, and schedules another
process from its list of processes, typically
in a round-robin fashion.

The Weather, Simple, and fast Fourier
transform traces were derived using the
postmortem scheduling method at IBM.
The Weather application partitions the
atmosphere around the globe into a three-

June 1990

Table 1. Summary of trace statistics, with length values in millions of references
to memory.

Source Language Processors Application Length

VAX T-bit C 16 P-Thor 7.09
MP3D 7.38
LocusRoute 7.05
SA-TSP 7.11

Postmortem Fortran 64 FFT 7.44
scheduler Weather 3 1.76

Simple 27.03
T-Mul-T Mul-T 64 Speech 11.77

dimensional grid and uses finite-differ-
ence methods to solve a set of partial dif-
ferential equations describing the state of
the system. Simple models the behavior of
fluids and employs finite difference meth-
ods to solve equations describing hydrody-
namic behavior. FFT is a radix-2 fast
Fourier transform.

Postmortem scheduling is a technique
that generates a parallel trace from a uni-
processor execution trace of a parallel
application. The uniprocessor trace is a
task trace with embedded synchronization
information that can be scheduled, after
execution (postmortem), into a parallel
trace that obeys the synchronization con-
straints. This type of trace generation uses
only one processor to produce the trace and
to perform the postmortem scheduling. So,
the number of processes is limited only by
the application’s synchronization con-
straints and by the number of parallel tasks
in the single processor trace.

The Speech trace was generated by a
compiler-aided tracing scheme. The appli-
cation comprises the lexical decoding
stage of a phonetically based spoken lan-
guage understanding system developed by
the MIT Spoken Language Systems
Group. The Speech application uses a dic-
tionary of about 300 words represented by
a 3,500-node directed graph. The input to
the lexical decoder is another directed
graph representing possible sequences of
phonemes in the given utterance. The
application uses a modified Viterbi search
algorithm to find the best match between
paths through the two graphs.

In a compiler-based tracing scheme,
code inserted into the instruction stream of
a program at compile time records the
addresses of memory references as a side
effect of normal execution. Our compiler-
aided multiprocessor trace implementa-
tion is T-MuI-T, amodification of the Mul-

T programming environment that can be
used to generate memory address traces for
programs running on an arbitrary number
of processors. Instructions are not cur-
rently traced in T-Mul-T. We assume that
all instructions hit in the cache and, for
processor utilization computation, an in-
struction reference is associated with each
data reference. We make these assump-
tions only for the Speech application,
because the other traces include instruc-
tions.

The trace gathering techniques also dif-
fer in their treatment of private data loca-
tions, which must be identified for the
scheme that only caches private data. The
private references are identified statically
(at compile time) in the Fortran traces and
are identified dynamically by post-
processing the other traces. Since static
methods must be more conservative than
dynamic methods when partitioning pri-
vate and shared data, the performance that
we predict for the private data caching
scheme on the C and Mul-T applications is
slightly optimistic. In practice, the non-
trivial problem of static data partitioning
makes it difficult to implement schemes
that cache only private data.

Simulating a cache-coherence strat-
egy. For each memory reference in a trace,
our cache and directory simulator deter-
mines the effects on the state of the corre-
sponding block in the cache and the shared
memory. This state consists of the cache
tags and directory pointers used to main-
tain cache coherence. In the simulation,
the network provides no feedback to the
cache or memory modules. Assume all
side effects from each memory transaction
(entry in the trace) are stored simultane-
ously. While this simulation strategy does
not accurately model the state of the
memory system on a cycle-by-cycle basis,

53

Table 2. Simulation parameter defaults for the cache, directory, and network.

Type of Parameter Name Default Value

CacheDirectory Cache size
Cache-block size
Cache associativity
Cache-update policy
Directory pointer replace policy

Network Network message header size
Network switch size
Network channel width
Processor cycle time

Memory address size
Base memory access time

256 Kbytes
16 bytes
Direct mapped
Write back
Random

16 bits
4 x 4
16 bits
2 x network
switch cycle time
32 bits
6 x network switch
cycle time

it does produce accurate counts of each
type of protocol transaction over the length
of a correct execution of a parallel pro-
gram.

However, since we assume that all side
effects of any transaction occur simultane-
ously, we do not model the difference be-
tween sequential and concurrent opera-
tions. This inaccuracy particularly affects
the analysis of chained directory schemes.
Specifically, when a shared write is per-
formed in a system that uses a chained
directory scheme, the copies of the written
location must be invalidated in sequence,
while a centralized directory scheme may
send the invalidations in parallel and keep
track of the number of outstanding ac-
knowledgments. Thus, the minimum la-
tency for shared writes to clean cache
blocks is greater for the distributed
schemes than for the centralized schemes.

Analyzing the trade-offs between cen-
tralized and distributed schemes requires a
much more detailed simulation. While it is
possible to accurately model the memory
system on a cycle-by-cycle basis, such a
simulation requires much higher overhead
than our simulations in terms of both pro-
gramming time and simulation runtime.
Our MIT research group is running experi-
ments on a simulator for an entire multi-
processor system. Simulations of the en-
tire system run approximately 100 times
slower than the trace-driven simulations
used for this article. Variants of coherence
schemes are harder to implement in the
detailed simulator than in the trace-driven
environment. To investigate a wide range
of applications and cache-coherence
protocols, we avoided the high overhead of

54

such detailed simulations by performing
trace-driven simulations.

In a trace-driven simulation, a memory
transaction consists of a processor-to-
memory reference and its effect on the
state of the memory system. Any transac-
tion that causes a message to be sent out
over the network contributes to the aver-
age request rate, average message size,
and average memory latency. Each type
of transaction is assigned a cost in terms
of the number of messages that must be
sent over the network (including both the
requests and the responses), the latency
encountered at the memory modules, and
the total number of words (including rout-
ing information) transported through the
network. Given a trace and a particular
cache-coherence protocol, the cache and
directory simulator determines the per-
centage of each transaction type in the
trace. The percentage of the transaction
type, multiplied by its cost, gives the con-
tribution of the transaction to each of the
three parameters listed above.

In addition to the cache-coherence
strategy, other parameters affect the per-
formance of the memory system. We
chose values for these parameters (listed
in Table 2) based on the technology used
for contemporary multiprocessors. Al-
though we chose a 256-kilobyte cache, the
results of our analysis do not differ sub-
stantially for cache sizes from 256 kilo-
bytes down to 16 kilobytes because the
working sets forthe applications are small
when partitioned over a large number of
processors. The effect of other parame-
ters, including the cache-block size, has
been explored in several studies (see

Eggers and Katz9 and references therein).

The interconnection network model.
The directory schemes that we analyze
transmit messages over an interconnection
network to maintain cache coherence.
They distribute shared memory and associ-
ated directories over the processing nodes.
Our analysis uses a packet-switched, buff-
ered, multistage interconnection network
that belongs to the general class of Omega
networks. The network switches are pipe-
lined so that a message header can leave a
switcheven while the rest of the message is
still being serviced. A protocol message
travels through n network switch stages to
the destination node and takes M cycles for
the memory access. The network is buff-
ered and guarantees sequenced delivery of
messages between any two nodes on the
network.

Computation of the processor utiliza-
tion is based on the analysis method that
Patello used. The network model yields the
average latency T of a protocol message
through the network with n stages, k x k
size switches, and average memory delay
M. We derive processor utilization Ufrom
a set of three equations:

U = 1
1 + m T

P = U m B

T = n + E + M - I + (pB(1- i)

where m is the probability a message is
generated on a given processor cycle, with
corresponding network latency T. The
channel utilization (p) is the product of the
effective network request rate (Um) and
the average message size E. The latency
equation uses the packet-switched network
model by Kruskal and Snir." The first term
in the equation (n + E + M - 1) gives the
latency through an unloaded network. The
second term gives the increase in latency
due to network contention, which is the
product of the contention delay through
one switch and the number of stages. We
verified the model in the context of our
research by comparing its predictions to
the performance of a packet-switched net-
work simulator that transmitted messages
generated by a Poisson process.

Table 2 shows the default network para-
meters we used in our analysis. While this
article presents results for a packet-
switched multistage network, it is possible
to derive results for other types of net-

COMPUTER

works by varying the network model used
in the final stage of the analysis. In fact, we
repeated our analysis for the direct, two-
dimensional mesh network that we plan to
use in our own machine. With the direct
network model, the cache-coherence
schemes showed the same relative behav-
ior as they did with the network model
described above. The ability to use the
results from one set of directory simula-
tions to derive statistics for a range of
network or bus types displays the power of
this modeling method.

Analysis of
directory schemes

The graphs presented below plot various
combinations of applications and cache-
coherence schemes on the vertical axis and
processor utilization on the horizontal
axis. Since the data reference characteris-
tics vary significantly between applica-
tions and trace gathering methods, we do
not average results from the different
traces. The results presented here concen-
trate on the Weather, Speech, and P-Thor
applications. We discuss other applica-
tions when they exhibit significantly dif-
ferent behavior.

Are caches useful for shared data?
Figure 3 shows the processor utilizations
realized for the Weather, Speech, and P-
Thor applications using each of the coher-
ence schemes we evaluated. The long bar
at the bottom of each graph gives the value
for “no cache coherence.” This number is
derived by considering all addresses in
each trace to be not shared. Processorutili-
zation with no cache coherence gives, in a
sense, the effect of the native hit/miss rate
for the application. The number is artificial
because it does not represent the behavior
of a correctly operating system. However,
the number does give an upper bound on
the performance of any coherence scheme
and allows us to focus on the component of
processor utilization lost due to sharing
between processors.

To assess the potential of shared data
caching schemes in general, we compare
the optimal (full-map) directory scheme to
the scheme that caches only private data.
For most applications (including the ones
shown in Figure 3), the full-map directory
yields significantly better processor utili-
zation than the scheme that caches only
private data. Generally good performance
of the full-map scheme in 16 and 64 pro-
cessor machines implies that caches are

June 1990

Only cache private date We at her

Full map (64 pointers)

Only cache private data Speech

Double link chein
Full map (64 pointers)

Only ceche private date P-Thor
DirtNB
Dir,NB
Dir,NB

Single link chain
Double link chem

Full map (1 6 pointers) J

No coherenca I

0.00 0.20 0.40 ’ ’ 0.60 ’ ’ 0.80 1.00
Pmcessor utiization

Figure 3. Comparison of coherence schemes.

useful for shared data, even when applica-
tions are not written or compiled specially
for a system with directory-based cache
coherence.

However, for two traces (Simple and
MP3D), processor utilization for a full-
map directory is worse than the utilization
for the private data-cache scheme. Exam-
ining the network model shows the reason
it is possible for private data caches to
perform better than full-map directories:
Even though the private cache scheme has
a higher network message rate, it uses
smaller message block sizes. In the model,
network latency is proportional to the
square of the message block size but is
linearly dependent on the message rate.

The fact that for Simple and MP3D the
private data-cache scheme performs better
than the full-map directory scheme indi-
cates that the average time between writes
by different processors to each shared
location is low. For these traces, the full-
map directory scheme does not perform
significantly better than the limited direc-
tory schemes.

Limited directory performance. How
well do limited directories perform com-
pared to the full-map directory scheme?
The answer depends on the amount of
shared data, the number of processors that
access each shared data location, and the
method of synchronization. The P-Thor
application was written to minimize com-
munication between processors by reduc-
ing the number of synchronization points
and the number of processors that read
each shared location. It is not surprising
that all of the directory schemes perform
well for this application.
On the other hand, four traces show

significantly worse processor utilization
for limited directories than for a full-map
directory due to naive synchronization
techniques (Weather, Simple, and SA-
TSP) or widespread sharing of a large read-
only data structure (Speech).

Chained directory performance.
When applications use data structures that
are widely shared and accessed frequently,
a limited directory performs significantly

55

Figure 4. System-level optimizations.

worse than a full-map directory. However,
Figure 3 shows that both singly and doubly
linked directories perform almost as well
as the full-map directory protocols. While
the doubly linked scheme always performs
slightly better than the singly linked
scheme, the small increase in performance
may not justify the additional resources
needed for the doubly linked scheme. The
difference between the schemes is small
because the number of replacements as a
percentage of total memory accesses is
very small, even though we simulated di-
rect-mapped caches.
In general, chained directory schemes

yield higher utilization than limited direc-
tory protocols. However, chained direc-
tory protocols are more complex and have
higher write latency than limited directory
protocols. We are still investigating the
ramifications of this trade-off.

Improving the
performance of
directories

The results presented above show that
limited directory schemes suffer from data
types that are both widely shared and fre-
quently referenced. We use the Weather
and Speech applications as case studies to
demonstrate two methods for ameliorating
the effects of this type of data. These meth-

56

ods are examples of system-level optimiza-
tions because they involve contributions
from several components of amultiproces-
sor system. In addition to improving the
performance of limited directory schemes,
the methods also enhance the performance
of the other coherence schemes.

The Weather application uses barriers as
the primary method of synchronization. In
the straightforward implementation of
barriers, each processor increments a bar-
rier variable and then spin-locks on a bar-
rier flag. The last processor to reach the
synchronization point increments the bar-
rier variable to its final value N and writes
into the barrier flag, thereby releasing the
spinning processors. The memory accesses
from many processors spin-locking on a
single location cause pointer thrashing
(repeated evictions) in the limited direc-
tory.

A software solution, called a combining
tree,I2 can alleviate this problem in direc-
tories. Instead of implementing barrier
synchronizations with a single barrier vari-
able and barrier flag, a balanced tree struc-
ture of nodes can be used for each. To
demonstrate the benefits of this barrier
implementation, we modified the
postmortem scheduler to implement com-
bining tree synchronization. The resulting
trace was virtually identical to the original
trace, except with respect to the distribu-
tion of synchronization address accesses.
In the original trace, all of the synchroniza-

tion addresses were accessed by all of the
processors. In the combining-tree trace,
almost all of the synchronization addresses
were accessed primarily by one processor,
with just one access by one other proces-
sor.

The top graph in Figure 4 shows that the
combining tree dramatically improves the
performance of the limited directory
schemes. The darker colored bars show the
processor utilization of the application
with linear barrier synchronization, and
the lighter bars show the enhanced utiliza-
tion when using the combining-tree struc-
ture. The two- and four-pointer directories
yield nearly the same processor utilization
as the full-map scheme. The one pointerdi-
rectory suffers from sharing of other data
between processors. However, this data
sharing must exist only between processor
pairs, because it does not affect the two-
pointer directory. Thus, combining tree
structures and limited directory schemes
provides an efficient implementation of
barrier synchronization.

The Speech application provides an
example of both a different programming
model and adifferent type of widely shared
data. There are two primary data structures
in the Speech application: an utterance (the
sentence to be identified) and a dictionary
(the algorithm’s vocabulary). For the dura-
tion of the application, these data struc-
tures are only read, but they are shared by
all the processors in the system. This type

COMPUTER

of data reference pattern causes pointer
thrashing in limited directories.

Given the nature of the Speech applica-
tion, it is fair to assume that all the read-
only variables can be identified by the
programmer. To assess the potential bene-
fits of marking read-only data, we post-
processed the trace to find all the data
locations that were only read for the dura-
tion of the trace. The read-only locations
were then marked as private to prevent the
cache and directory simulator from execut-
ing coherence transactions for this data.
When these locations were identified on a
block-by-block basis, the system showed
moderate improvement for the limited di-
rectory schemes. However, when the post-
processor identified the read-only loca-
tions on a word-by-word basis and relo-
cated the data to a special segment of
memory, the improvement was more pro-
nounced. The bottom graph in Figure 4
demonstrates the increase in processor
utilization realized by specially processing
read-only data. The darkest bars show the
unoptimized performance of the Speech
application; the lighter bars show the gains
due to processing read-only data.

The boost in processor utilization due to
read-only data detection on a word-by-
word basis can be explained by the reduc-
tion of sharing due to cache blocks that
contain unrelated data words accessed by
different processors. The Mul-T runtime
system ignored the boundary of cache
blocks and allocatedread-write data words
in the same cache blocks as read-only data
words. This data allocation policy pre-
vented the block-by-block postprocessor
from properly identifying read-only data
words and lowered processor utilization
by creating unnecessary shared data traffic
in the network.

When multiprocessor algorithms and
software are optimized for caches, large-
scale cache-coherent systems realize their
execution potential. In the case of the
Weather and Speech applications, system-
level optimizations resulted in processor
utilizations between 0.6 and 0.8 for scal-
able cache-coherence protocols. Coordi-
nating multiprocessor hardware and soft-
ware requires some subset of programmer
specifications, new language primitives,
special compile-time analysis, support in
the runtime system, specialization in the
processor-to-cache interface, and addi-
tional states in the cache-coherence proto-
col. The modifications described in this
article represent archetypes of systemwide
efforts to improve multiprocessor per-
formance.

his article has shown that, by using
system-level optimizations, it is T possible to build large-scale cache-

coherent multiprocessors. Using processor
utilization as a metric, we evaluated the
performance of several cache-coherence
protocols, including limited directories
and chained directories. We compared
protocols that are scalable in terms of their
memory overhead to a protocol that cached
only private data and to a nonscalable
protocol (full-map). While the scheme that
cached only private data performed fairly
well, the shared data caching schemes
performed better for the majority of the
applications that we studied. Limited and
chained directory schemes permitted the
use of caches to significantly reduce the
effective shared memory latency.

There is no hardware panacea for the
cache-coherence problem. As with many
other problems in computer architecture,
good solutions balance hardware and soft-
ware optimizations that combine to im-
prove system performance. When we ap-
plied system-level optimizations to cach-
ing, we were able to improve the perfor-
mance of systems with large numbers of
processors.

Our work can be extended in several
ways. The most straightforward extension
would repeat our trace-driven evaluation
using other network models.

Our research group at MIT is currently
performing more detailed simulations of
directory schemes, coupled with processor
and network simulators, to get accurate
multiprocessor performance statistics.
Such simulations allow us to address the
issue of hot spots, the impact of high-
latency operations, and the effect of inter-
rupting local cache accesses with external
invalidation messages. We are also re-
searching various methods for alleviating
the effects of communication latency.
These methods include using mul-
tithreaded processors with coherent
caches, software emulation of directories,
and coherence models other than sequen-
tial consistency.

Acknowledgments
It is impossible to analyze a large range of

applications, programming models, and archi-
tectures without becoming indebted to a host of
collaborators.

Mathews Cherian laid the foundation for our
analysis by writing both the postmortem sched-
uler with Kimming So at IBM and the cache and
directory simulator. Pat Teller of New York

University provided the Simple and Weather
programs, and FFT was written at IBM. Harold
Stone and Kimming So helped us obtain the
IBM traces. Wolf-Dietricb Weber and Anwp
Gupta provided us with the four VAX T-bit
traces, which were generated using a system
developed by Steve Goldschmidt at Stanford.
David Kranz wrote the Mul-T compiler and the
T-Mul-T trace generator and helped analyze the
results from the Mul-T application. Kirk
Johnson, who wrote and traced the Speech
application, is responsible for the read-only data
processing results. Gino Maa and Sue-Kyoung
Lee wrote the packet switched network simula-
tor that validated our network model.

Encore Computer Corporation provided the
Multimax system that runs T-Mul-T. Digital
Equipment Corporation and Harris Computer
Systems provided the machines we used to
manipulate gigabytes of trace data. We would
also like to thank the rest of the Alewife group
for putting up with our interminable trace-driven
simulations.

The research reported in this article is funded
by DARPA contract No. N00014-87-K-0825
and by grants from the Sloan Foundation and
IBM.

References
1. J.R. Goodman, ‘‘Using Cache Memory to

Reduce Processor-Memory Traffic,” Proc
loth Ann. Symp. Computer Architecture,
June 1983, pp. 124-131.

2. L.M. Censier and P. Feautrier, “A New
Solution to Coherence Problems in Multi-
cache Systems,” IEEE Trans. computers.
Vol. C-27, No. 12, Dec. 1978, pp. 1,112-
1,118.

3. A. Agarwal et al., “An Evaluation of Direc-
tory Schemes for Cache Coherence,” Proc.
ISth Int’lSymp. Computer Architecture, CS
Press, Los Alamitos, Calif. Order No. 861.
June 1988, pp. 280-289.

4. D.V. James et al., “New Directions in Scal-
able Shared Memory Multiprocessor Archi-
tectures: Scalable Coherent Interface,”
Computer. June 1990, Vol. 23, No. 6, pp.
74-77.

5 . L. Lamport, “How to Make a Multiproces-
sor Computer that Correctly Executes
Multiprocess Programs,”IEEE Trans. Com-
puters. Vol. C-28, No. 9, Sept. 1979, pp.
690-691.

6. J. Archibald and J.-L. Baer, “Cache-Coher-
ence Protocols: Evaluation Using a Multi-
processor Simulation Model,” ACM Trans.
ComputerSystems, Vol.4,No.4,Nov. 1986,
pp. 273-298.

7. D. Kranz, R. Halstead. and E. Mohr, “Mul-
T: A High-Performance Parallel Lisp,”
Proc. SIGPlan 89, Conf. Programming
Languages Design and Implemenation,
June 1989, pp. 81-90.

June 1990 5 1

8. W.-D. Weber and A. Gupta, “Analysis of
Cache Invalidation Patterns in
Multiprocessors,” Third Int’l Conf Archi-
tectural Support for Programming Lan-
guages and Operating Systems (ASPLOS
110, CS Press, Los Alamitos, Calif. Order
No. 1936. Apr. 1989, pp. 243-256.

9. S.J. Eggers and R.H. Katz, “The Effect of
Sharing on the Cache and Bus Performance
of Parallel Programs,’’ Third Int’l Conf.
Architectural Support for Programming
Languages and Operating Systems
(ASPLOS 110, CS Press, Los Alamitos,
Calif. Order No. 1936, Apr. 1989, pp. 257-
270.

10. J.H. Patel, “Analysis of Multiprocessors
with Private Cache Memories,”lEEE Trans.
Computers,Vol. C-31,No. 4, Apr. 1982,pp.
296-304.

11. C.P. Kruskal and M. Snir. “The Perfor-
mance of Multistage Interconnection Net-
works for Multiprocessors,” IEEE Trans.
Computers, Vol. C-32, No. 12, Dec. 1983
pp. 1,091-1.098.

12. P.-C. Yew, N.-F. Tzeng, and D.H. Lawrie,
“Distributing Hot-Spot Addressing in
Large-scale Multiprocessors,” IEEE Trans.
Computers, Vol. C-36,No. 4,Apr. 1987,pp.
388-395.

David Chaiken is a member of the Labora-
tory for Computer Science at the Massachusetts
Institute of Technology and a graduate student
in the MIT Department of Electrical Eogineer-
ing and Computer Science. His research in-
volves computer architectures and program-
ming models for parallel processing.

Chaiken received his BS in mathematics and
chemistry from Brown University in 1986.

The authors can be contacted at the Labora-
tory for Computer Science, Massachusetts Insti-
tute of Technology, Cambridge, MA 02139.

Software Developers
T W , the company of tomorrow, invites you to become part of our future. We
have many openings in Redondo Beach, CA for Software Developers with ex-
perience in one or more of the following areas

Ada
VAXIVMS FORTRAN
C/Unix on a M68030-based

PASCAL
Software Systems Engineering
Real Time Multi-tasking
Device DriversIMACRO

Sun workstation

S/W Modeling and
Performance Simulation

Algorithm Development
Onboard Processing
RadadSignal Processing
Mission Planning
Image Processing
Sensor Data Processing

If you meet our special technical needs, we would like you to send a resume to:

TRW System Development Division
One SDace Park
Bldg-ba, Room 1356
Department IEC6
Redondo Beach, CA 90278

Craig Fields is an applications programmer
for Project Athena at the Massachusetts Institute
of Technology. He is also a member of the
Alewife group in the institute’s Laboratory for
Computer Science. His research interests are
parallel architectures and systems development.

Fields attended MIT until 1989.

Kiyoshi Kurihara, a systems engineer at
IBM Japan, is a postgraduate studying in the
Department of Electrical Engineering and
Computer Science of the Massachusetts Insti-
tute of Technology under an MIT Overseas
Study Program scholarship from the company.
His research interests are computer architecture
and system performance evaluation methodol-
ogy. He is carrying out research work at MIT’s
Laboratory for Computer Science.

Kurihara received his bachelor of engineer-
ing degree from the University of Tokyo in
1981.

Anant Agarwal has been an assistant profes-
sor of electrical engineering and computer sci-
ence in the Laboratory for Computer Science at
the Massachusetts Institute of Technology since
January 1988. His research interests include the
design of scalable multiprocessor systems,
VLSl processors, parallel processing software,
and performance evaluation. He initiated MIT’s
Alewife project, which aims to design and
implement a large-scale cache-coherent multi-
processor.

Agarwal received the BTech degree in elec-
trical engineering from the Indian Institute of
Technology, Madras, India, in 1982, and the MS
and PhD degrees in electrical engineering from
Stanford University in 1984 and 1987. respec-
tively. He is a member of the IEEE Computer
Society.

COMPUTER

