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Abstract 

This paper describes the synchronization and communication 
primitives o f  the Cray T3E muhiprocessor, a shared memory sys- 
tem scalable to 2048processors. We discuss what we have learned 
from the T3D project (the predecessor to the T3E) and the ratio- 
nale behind changes made for the T3E. We include performance 
measurements for various aspects of  communication and synchro- 
nization. 

The T3E augments the memory interface of  the DEC 21164 micro- 
processor with a large set of  explicitly-managed, external registers 
(E-registers). E-registers are used as the source or target for all 
remote communication. They provide a highly pipelined interface 
to global memory that allows dozens of  requests per processor to 
be outstanding. Through E-registers, the T3E provides a rich set of  
atomic memory operations and a flexible, user-level messaging 
facility. The T3E also provides a set of  virtual hardware barrier/ 
eureka networks that can be arbitrarily embedded into the 3D 
torus interconnect. 

1 Introduction 
The goal of kiloprocessor multiprocessing presents a number of 
challenges. Fundamentally, it requires software capable of expos- 
ing parallelism in an application, and hardware capable of exploit- 
ing that parallelism by providing the necessary communication 
and synchronization support. 

Parallelism may be exposed explicitly, using the message passing 
model (e.g.: Parallel Virtual Machine (PVM) [14] or Message 
Passing Interface (MPI) [31]), or implicitly, using the shared- 
memory programming model (e.g.: High Performance Fortran 
(HPF) [19] or the Alpha AXP architectural model [10]). The 
shared-memory model is widely accepted as easier to use, and is 
better suited for irregular, dynamic parallelism. The message pass- 
ing model, however, is currently more portable (PVM and MPI 
run on a wide variety of machines) and makes the detection of par- 
allelism and optimization of data layout significantly easier for the 
compiler. 

For either programming model, however, the best performance is 
likely to be delivered by a tightly-coupled, shared-memory sys- 
tem. The choice of shared memory for the T3D and T3E was not 
an endorsement of the shared memory programming model over 
the message passing model, but was made because it minimized 
synchronization and communication overhead. 
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As Amdahrs Law illustrates, lower synchronization and commu- 
nication overhead have the following direct results: 

1. a greater number of processors can be used to solve a 
given problem at a given efficiency, or 

2. a finer granularity of work can be performed with a given 
number of processors. 

Depending upon the application, communication bandwidth or 
communication/synchronization latency may drive the overhead. 
A highly scalable multiprocessor must address both. 

Most multiprocessors are built with commodity microprocessors, 
which offer rapidly increasing performance and excellent price 
performance. Microprocessors, however, are generally designed 
for workstations and modestly parallel servers. A large-scale mul- 
tiprocessor creates a foreign environment into which they are ill- 
equipped to fit. 

The most striking limitation of most microprocessors is their 
memory interface. The interfaces are cache line based, making ref- 
erences to single words (corresponding to strided or scatter/gather 
references in a vector machine) inherently inefficient. More 
importantly, they typically allow only one or a small number of 
outstanding references to memory, limiting the ability to pipeline 
requests in large systems. For example, the DEC 21064 [11] and 
21164 [12], on which the Cray T3D and T3E are based, allow a 
maximum of one and two outstanding cache line fills from mem- 
ory, respectively. 

Microprocessors often lack sufficiently large physical address 
spaces for use in large-scale machines. The DEC 21064, for exam- 
ple, implements a 33-bit physical address 1, while the maximum 
physical memory in the T3D, is over 128 GB. 

TLB reach is another potential problem. A TLB that is sufficiently 
large for a powerful workstation may be insufficient for a machine 
with a thousand processors and a terabyte of physical memory. 

Microprocessors are designed to cache data that they reference. 
While this is usually beneficial, it is sometimes desirable to make 
non-cached references to memory. When writing to another pro- 
cessor's memory in a message-passing program, for example, it is 
far better for the data to end up in the recipient processor's mem- 
ory than in the sending processor's cache! 

In general, microprocessors are designed with an emphasis on 
latency reduction rather than latency toleration. While this is an 
effective approach for many codes, it is ineffective for scientific 
codes with poor locality, and it does not support high-bandwidth 
communication in large-scale multiprocessors. 

This paper discusses the Cray T3E multiprocessor, which is based 
on the DEC Alpha 21164 microprocessor. We describe the "shell" 

1. A 34th bit is used to distinguish between memory and I/O 
space. 
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that surrounds the processor to make it fit comfortably into a kilo- 
processor machine, and discuss features designed to support 
highly-parallel, fine-grained programming. The paper focuses on 
communication and synchronization, giving little consideration to 
the processor, network, memory system or I/O system. 

The T3E is the second in a line of scalable multiprocessors, fol- 
lowing the Cray T3D [8][35], which first shipped in late 1993. 
Section 2, discusses lessons from the T3D project. Section 3 gives 
a general overview of the T3E. Sections 4 through 7 discuss global 
communication, atomic memory operations, message passing sup- 
port and barrier/eureka synchronization. Section 8 presents perfor- 
mance measurements, Section 9 discusses related work, and 
Section 10 concludes. 

2 Lessons from the T3D 
The T3D connects up to 2048 DEC Alpha 21064 microprocessors 
via a 3D torus network, with two processors per network node. 
Each processor contains up to 64 MB of local memory, and the 
memories of all processors are accessible via a shared address 
space. 

To extend the 33-bit physical address space of the 21064, a "DTB 
Annex ''1 is maintained in the shell outside the processor. The 
upper bits of a load or store address contain an index into the 
Annex, and the corresponding Annex entry provides the PE bits 
for the address. Although remote memory can be cached, the on- 
chip cache tags will contain an Annex index rather than PE bits, so 
the line must be flushed if the Annex entry is changed. A more 
complete description can be found in [24] or [8]. 

The T3D has several strengths that have been carded forward into 
the T3E. First among these is the shared address space. Although 
the shared memory efficiently supports CRAFT [38], Cray's ver- 
sion of parallel Fortran, the most widely used programming mod- 
els on the T3D have been PVM, and, for performance-critical 
communication, Shmem [9]. Shmem is a shared-memory-based 
message passing library that supports direct memory-to-memory 
transfers without involving the operating system. Researchers at 
Illinois have also found the shared memory instrumental in 
achieving good messaging performance [22]. 

The interconnection network has also proven to be a strength. The 
3D torus is wiring-efficient [1] and scales well to large numbers of 
processors, providing sub-microsecond access latencies and a 
bisection bandwidth of over 70 GB/s with 1024 processors. The 
T3D is the only machine with a complete set of published NAS 
Parallel Benchmarks results for greater than 128 processors 
(results up to 1024 processors have been published) [43]. 

The T3D barrier network consists of a four-wire-wide, degree-four 
spanning tree over the entire machine. It provides full machine 
barrier synchronization in less than 2 Its 2. While this has proven 
useful, especially for CRAFT programs in which global synchro- 
nization is quite frequent, it appears to be a case of over-engineer- 
ing. We have yet to encounter an application in which barrier time 
is a large fraction of total run-time, and the dedicated barrier net- 
work is expensive. In addition, we have found the management of 
the physical barrier resource to be burdensome. 

The T3D has several weaknesses, many of which have been 
reported in [3]. The largest of these is the relatively low single 
node performance. This is caused by a fixed clock (150 MHz), 
which has not tracked improvements in the 21064 processor, and 

1. DTB stands for Data Translation Buffer, DEC's term for a 
TLB. 
2. Most of this time is in the library software; performance is 
almost independent of machine size. 

by lack of a board-level cache (each processor uses only its 8KB 
on-chip data cache). This last feature, however, does allow the 
T3D to provide significantly higher memory bandwidth; the 
STREAM single processor copy benchmark on the 150 MHz T3D 
yields over 4 times the bandwidth of the DEC 2100 A500-4/200 
using the same processor clocked at 200 MHz [29][28]. 

The T3D implements three different ways to access remote mem- 
ory" direct loads and stores, an explicit prefetch queue that allows 
up to 16 outstanding single-word references, and a block transfer 
engine (BLT) that provides bulk, asynchronous data transfers 
between processors' memories. Load/store performance high- 
lights the memory pipelining issue. Since only a single outstand- 
ing cache line fill is allowed, sustainable load bandwidth is fairy 
low (about 30 MB/s in a 256-processor machine). Sustainable 
store bandwidth is much higher (about 120 MB/s, independent of 
size), since the stores are acknowledged right away by the proces- 
sor shell, and an unlimited number may be pipelined in the inter- 
connect. 

The prefetch queue is used by both the CRAFt compiler, to fetch 
remote data in loops, and the Shmem libraries, to increase mem- 
ory copy bandwidth. Its main limitation is that only a single 
stream can be prefetched, making it difficult to coordinate its use 
among multiple parties. Our compiler writers would have liked 
multiple queues. 

The BLT is shared between the two processors at a node and 
requires a system call to use. It takes on the order of 1000 6-ns 
processor clocks to start up a transfer, and as a result has been of 
little use. Even if the BLT startup was more reasonable, its value 
would be questionable. We have found that having three ways to 
access remote memory is more of a liability than a benefit. It 
means that the compiler, library and/or user must always decide 
how to access memory, an optimization problem for which the 
necessary information is seldom available. 

The DTB Annex has proven useful for library routines, but diffi- 
cult for the compiler to exploit. Without global information, the 
Annex entries are generally set up each time they are used. Since 
the overhead to change an Annex entry is small, a single entry 
would have likely sufficed. 

Several features in the T3D require special management, includ- 
ing the barrier network and the two dedicated fetch_&_inc regis- 
ters and one dedicated message queue at each processor. Since 
these are special hardware resources, they must be protected by 
the operating system. The message queue also requires OS 
involvement on the receiving side, as user and OS messages share 
the same queue, significantly increasing message latency. The Illi- 
nois messaging implementation [22] did not use the dedicated 
messaging hardware. 

The DTB Annex allows a single DTB ent_ry to map a physical 
page on all processors in a parallel program 3, but every processor 
must use the same mapping. So while DTB coverage is signifi- 
cantly amplified, memory management is inflexible; moving a 
shared page on one processor requires stopping all processors in 
the program and moving their pages too. This is similar to the 
TLB shootdown problem [4], but significantly more expensive. 

In summary, the shared memory and fast 3D network have been 
very useful, and non-cached stores and the prefetch queue have 
proven to be very effective for pipelined remote memory access. 
But there are too many ways to access remote memory, remote 
load bandwidth is poor, and several special-purpose hardware fea- 

3. The software must explicitly manage the Annex, however, 
to access all PEs. 
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tures have proven cumbersome to manage and/or inflexible to use. 
The design of the T3E was largely guided by these experiences. 

3 T3E overview 
The T3E implements a logically shared address space over physi- 
cally distributed memories (up to 2 GB per processor). Each pro- 
cessing element (PE) contains a DEC Alpha 21164 processor 
connected to a "shell", consisting of a control chip, a router chip 
and a local memory (see Figure 1). The system logic runs at 75 
MHz, and the processor runs at some multiple of this (initially 300 
MHz). 

64 MB to 
2 GB 

.=ctional 
)rus 
:onnect 

Figure 1. T3E PE block diagram 

Like the T3D, up to 2048 processors are connected by a bidirec- 
tional 3D torus, but each node of the torus contains only a single 
processor, and the network implements fully adaptive, minimal- 
path routing [45]. The network links are time multiplexed at five 
times the system frequency, and can deliver one 64-bit word of 
payload each sysclock (13.3 ns). 

The T3E is a self-hosted machine 1 running Unicos/mk, a server- 
ized version of Unicos based on the Chorus microkernel [7]. I/O is 
based on the GigaRing channel [44], with sustainable bandwidths 
of 267 MB/s input and output for every four processors. 

Like the T3D, the T3E contains no board-level cache, but the 
21264 processor has two levels of caching on chip: 8KB first level 
instruction and data caches, and a unified, 3-way associative, 96 
KB second level cache. As with the T3D, memory bandwidth is 
higher than would be possible with a board-level cache. Measured 
performance on the STREAM copy benchmark of 470 MB/s is 
over twice that of the DEC 8400 5/300 (186 MB/s), which uses a 
21164 processor running at the same frequency [29][28]. 

The 21164 allows two outstanding 64-byte cache line fills. Local 
memory bandwidth is enhanced by a set of hardware stream buff- 
ers. These buffers automatically detect consecutive references to 
multiple streams, even if interleaved, and prefetch additional 
cache lines down each stream. They can achieve much of the ben- 
efit of a large, board-level cache for scientific codes at a small 
fraction of the cost [36]. 

Only local memory is cached in the T3E. The on-chip caches are 
kept coherent with local memory through an external backmap, 
which filters memory references from remote nodes and probes 
the on-chip cache when necessary to invalidate lines or retrieve 
dirty data. 

The T3E augments the memory interface of the DEC 21164 
microprocessor with a large set (512 user plus 128 system) of 
explicitly-managed, external registers (E-registers). All remote 
communication and synchronization is done between these regis- 
ters and memory. 

The E-registers take the place of the T3D's DTB Annex, prefetch 
queue, block transfer engine and remote loads/stores. They also 
facilitate the removal of dedicated fetch_&_inc registers and mes- 
sage queues. Instead, synchronization variables and message 
queues are stored in normal user memory, allowing them to be 
managed via the existing address translation mechanism and sub- 
stantially increasing their flexibility. In a similar vein, the dedi- 
cated barrier/eureka network has been virtualized, easing the task 
of managing the barrier trees and providing multiple logical bar- 
tier networks. 

The goals of the T3E design were to integrate and simplify the 
various features of the shell, make messaging, synchronization 
and memory management more flexible, and significantly increase 
the amount of pipelining in the memory system, both for cache- 
able references to local memory and non-cached references to 
remote memory. 

4 Global communication 
This section explains the use of E-registers for global communica- 
tion. E-registers provide two primary benefits over a more 
straight-forward load/store mechanism for accessing global mem- 
ory: they extend the physical address space of the microprocessor 
to cover the full physical memory of the machine, and they radi- 
cally increase the degree of pipelining attainable for global mem- 
ory requests. They also provide efficient single-word bandwidth, 
an integrated centrifuge for flexible data distribution, and a conve- 
nient mechanism for messaging and atomic memory operations. 

The 21164 implements a cacheable memory space and a non- 
cacheable I/O space, distinguished by bit 39 of the 40-bit physical 
address. Local memory loads and stores in the T3E use cacheable 
memory space. Address translation takes place on the processor in 
the usual fashion, and physical addresses are passed through the 
shell directly to the memory. 

The T3E uses I/O space to access memory-mapped registers, 
including the E-registers. There are two primary types of opera- 
tions that can be performed on E-registers: 

• Direct loads and stores between E-registers and pro- 
cessor registers. 

• Global E-register operations. 

Direct E-register loads/stores are used to store operands into E- 
registers and load results from E-registers. Global E-register oper- 
ations are used to transfer data to/from global (meaning remote or 
local) memory and perform messaging and atomic operation syn- 
chronization. 

4.1 Address translation for global references 

For global E-register operations, a global virtual address (shown in 
Figure 2) and virtual PE number are formed outside the processor 
in the shell circuitry. The virtual PE number goes through a trans- 
lation mechanism at the source processor to identify the physical 
PE, and the global virtual address is transmitted across the net- 
work, where it goes through a virtual-to-physical translation using 
a global translation buffer at the target PE. 

63 3837 32 30 
B Segment Offset 31 

GSEG 6 B Must be zero 

Figure 2. Global virtual address (GVA) 

1. The T3D requires a Cray vector machine as a front end. 
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The T3E supports the data distribution features of many implicit 
programming languages [38][19][6][13] via an integrated hard- 
ware centrifuge. The virtual address for global references is 
formed using a mask, index and base. The mask bits indicate 
which of the bits in the index represent PE bits, and which bits 
represent address within a PE. For each bit set in the mask, the 
corresponding bit in the index is extracted. The extracted bits are 
compacted to form a virtual PE number, and the remaining bits are 
compacted and added to the base to form a virtual address. Typi- 
cally a base and mask are set up for each shared distributed array 
and then the index is varied. 

Figure 3 illustrates the centrifuge operation for an array distrib- 
uted over 64 PEs. The bits in the index corresponding to the ones 
in the mask are pulled out to form the virtual PE number (PE 37 in 
this case). The remaining bits of the index form an offset which is 
added to the base. Since the PE field starts at bit 6, each successive 
cache line (64 bytes) in the shared array maps to a new PE. 

49 0 
MasklO00000000000000000000000000000000000001111110000001 

Index~O0000000000000000000000000000000001110i100)01i0100001 

I00000000000000000000000000001110010000 I 
Offset Virtual PE 

Base 100001010000000001100000000000000000000 I 

Virtual 1000010110000000001100000000001110010000 I 
Addr. VSEG Segment Offset 

Figure 3. HW centrifuge operation example: Array 
interleaved by cache line over 64 PEs 

A typical "distributed memory" (message passing) program would 
use a single mask and base for all E-register operations. The base 
would be set to zero and the mask would have a block of set bits in 
the upper part of the address. The index would thus contain a com- 
plete address; the lower part would simply be a virtual address 
within a PE, and a field in the upper part would represent a PE 
number. 

The full address translation path for a global E-register reference 
is shown in Figure 4. The operation is performed by performing a 
store in I/O space. The address of the store encodes a command 
(e.g.: read a word from remote memory into an E-register) and a 
source or destination E-register. The 64-bit word written onto the 
data bus includes the index for the remote memory location and a 
pointer to an aligned block of four E-registers containing the mask 
and base for the centrifuge and up to two additional arguments. 
Before performing the operation, the mask and base must have 
been stored into the E-registers. This need only be done once for 
each distributed array (or at least is done outside the inner loop). A 
single general-purpose mask/base pair may also be set up for all 
miscellaneous data references, or for all references in a message- 
passing program as described above. 

The index is centrifuged with the mask and base to produce a vir- 
tual address and virtual PE number (this is the PE number that an 
application uses; virtual PE space always goes from 0 to n-1 in an 
n-processor job). The virtual address includes a virtual segment 
number, which indexes into a segment translation table. The seg- 
ment translation table produces a global segment (GSEG), a base 
PE (which corresponds to section of the machine in which the 
application is running), a PE limit and protection information. The 
virtual PE is added to the base PE to produce a logical PE number, 

~ !  Global Virtual Address38 

~ Physicat Address31 

Figure 4. Address translation for global (E-register) 
references 

which is presented to a routing lookup table to produce a physical 
routing tag 1. 

The segment lookup on the source node guarantees that user-gen- 
erated addresses only access authorized GSEGs on authorized 
PEs. Segment range violations are detected at the remote node. 
The 6-bit GSEG space allows multiprogramming; different jobs 
(with possibly common VSEGs) sharing memory at a node are 
assigned different GSEGs. 

The GSEG and segment offset form a GVA (refer to Figure 2) that 
is transmitted across, the network with the reference. At the remote 
node, the GVA goes through a translation to produce the actual 
physical address at that node. The global translation buffer per- 
forms page-based translation with flexible pages sizes (64 KB - 
128 MB), and is hardware-loaded from a complete page table in 
memory (so cannot fault under normal conditions). 

The remote translation step allows each node to manage its own 
physical memory; it can move its part of a shared segment inde- 
pendently from the other processors. This eliminates TLB shoot- 
downs entirely. 

To further support this, an integrated hardware engine we call the 
"magical memory mover" can perform a local memory copy oper- 

1. The logical PE to physical routing tag translation allows 
spare PEs to be mapped in to replace broken PEs. 
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ation in the background and allow memory requests to that page to 
be serviced while the copy is in progress (the reference is serviced 
from the old or new location depending upon whether that particu- 
lar word has been transferred yet). This allows the operating sys- 
tem to move a page of a shared segment without delaying any of 
the processors in the parallel job accessing the page. 

4.2 Get  a n d  Pu t  operations 
The global operations to read memory into E-registers or write E- 
registers to memory are called Gets and Puts, respectively. There 
are two forms of Gets and Puts: single word and vector. Both can 
operate on either 32-bit or 64-bit words. Vector Gets and Puts 
transfer 8 words, with an arbitrary stride. The stride operand is 
stored in the block of E-registers that contains the mask and base. 

Access to E-registers is implicitly synchronized by a set of state 
flags, one per E-register. A Get operation marks the target E-regis- 
ter(s) empty until the requested data arrives from memory, at 
which time they are marked full. A load from an E-register will 
stall if the E-register is empty until the data arrives. A Put from an 
E-register will also stall if the E-register is empty until the data 
becomes available. A global memory copy routine might perform 
Gets from the source area of memory into a block of E-registers 
and subsequently Put the data from the E-registers to the target 
memory area. The implicit state flag synchronization protects 
against the RAW hazard in the E-registers. 

Since there are a large number of E-registers, Gets and Puts may 
be highly pipelined. The bus interface allows up to four properly- 
aligned Get or Put commands to be issued in a two-cycle bus 
transaction, allowing 256 bytes worth of Gets or Puts to be issued 
in 26.7 ns. This issue bandwidth is far greater than the sustainable 
data transfer bandwidth, so the processor is not a bottleneck. Data 
in a memory-to-memory transfer using E-registers does not cross 
the processor bus; it flows from memory into E-registers and out 
to memory again. 

In addition to providing a highly-pipelined memory interface, the 
E-registers provide special support for single-word load band- 
width. Row accesses in Fortran, for example, can be fetched into 
contiguous E-registers using strided vector Gets. The resulting 
blocks of E-registers can then be loaded broadside into the proces- 
sor in cache-line-sized blocks, making significantly more efficient 
use of the bus than would be possible with normal cache line fills. 

The maximum data transfer rate between two nodes using vector 
Gets or Puts (as determined by the network) is 480 MB/s, and E- 
register control logic further limits the bandwidth to something 
less than this, depending upon the operation. At this rate Little's 
Law 1 indicates that 128 E-registers provide sufficient pipelining to 
hide the round-trip packet latencies plus command issue times (on 
the order of 1-2 Its). 

5 Atomic memory operations 
The T3E expands upon the atomic SWAP feature of the T3D to 
provide a rich set of atomic operations. While SWAP operations in 
the T3D can only be performed on dedicated SWAP registers, 
atomic operations in the T3E can be performed on arbitrary mem- 
ory locations, allowing an unlimited number of synchronization 
variables, easing the job of the compiler, and removing the 
involvement of the operating system. 

Table 1 lists the atomic memory operations (AMOs) provided by 
the T3E. Fetch_&_inc, fetch_& add, and compare_&_swap are 
well known synchronization primitives. Masked_swap provides 

1. N = XoR, where X = throughput, R = response time, and N 
- number outstanding. 

test_and_set and clear operations on individual bits, by swapping 
in ones or zeros in specified locations. It also provides a mecha- 
nism to perform atomic byte (or other size) stores. 

Atomic Operation 
(operands) Description 

Fetch_&_Inc Add one to memory location and return 
(none) original memory contents. 

Fetch_&_Add Add integer addend to memory location 
(addend) and return original memory contents. 

Compare_&_Swap If comperand equals contents of 
(comperand, memory, then store swaperand into 
swaperand) memory. Return original contents of 

memory. 

Masked_Swap 

(mask, swaperand) 

Table, 1. 

For each bit set in mask, store 
corresponding bit of swaperand into 
memory. Return original contents of 
memory. 

Atomic Memory Operations 

Herlihy has shown [17] that compare & swap is a universal prim- 
itive, meaning that it can be used to construct a wait-free imple- 
mentation 2 of any sequential object (e.g.: shared work queues). It 
is also necessary or beneficial for a variety of scalable synchroni- 
zation algorithms [30][32]. Load-linked/store-conditional, imple- 
mented in several architectures [10][41][27], is also a universal 
primitive, and in fact can allow more straight-forward implemen- 
tations of some concurrent objects [18]. However, most load- 
linked/store-conditional implementations place restrictions on the 
types of operations that can be performed in the critical section 
(e.g.: no memory operations), and the primitive does not scale 
well to large numbers of processors under variable contention. 

To perform an AMO in the T3E, any necessary operands are first 
written to E-registers. The operation is then triggered via a store to 
I/O space, as described in Section 4.1. The AMO command is 
specified on the address bus. The necessary operands are read 
from the aligned block of E-registers that is used for the mask and 
base. An atomic memory operation packet is then sent to the spec- 
ified global memory location, where the operation is performed. 
The result is returned to the E-register specified on the address bus 
of the AMO command. 

Most AMOs in the T3E require a read-modify-write of DRAM, 
resulting in a minimum repeat time of 11 sysclocks (147 ns) for a 
given synchronization variable (8M AMOs per second). High 
bandwidth fetch_&_inc operations are supported via a buffer at 
the memory controller of each node. Successive fetch &_incs to 
the same word are satisfied out of the buffer, allowing a repeat 
time as low as 13.3 ns, or 75 M fetch_&_incs per second. 3 

6 Messaging 
Message queues in the T3D and T3E are intended to support dis- 
tributed memory applications and inter-process communication 
within the operating system. 

The T3D provides a single message queue at each processor that is 
shared by both user and system messages. The queue is of fixed 

2. One in which no blocked (e.g. swapped out) process can 
impede the progress of any other process. 
3. The buffer was originally intended to support all atomic 
operations, but due to implementation constraints, only 
fetch_&_incs were supported. 
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size (256 KB) and is located at a fixed location in memory. Mes- 
sages are 32 bytes plus header information. While the hardware 
transmission latency involves only a single network traversal, all 
incoming messages generate interrupts and are examined by sys- 
tem software. This adds a significant latency penalty to message 
receipt, calling into question the efficacy of using the special 
mechanism rather than constructing message queues in normal 
shared memory. 

The T3E allows an arbitrary number of  message queues to be cre- 
ated by either user or system code. Queues are mapped into nor- 
mal memory space and can be of any size up to 128 MB. 
Messages are 64 bytes (no header is stored). The queues can be set 
to interrupt on arrival, never interrupt (in which case messages are 
detected via polling), or interrupt only when some threshold num- 
ber of messages have arrived. T3E message queues integrate the 
desirable features of  message passing (one-way network traversal 
latency, no distributed buffer management) with the flexibility of a 
shared-memory implementation. 

6.1 Message Queue Control Word 

A message queue is created by simply constructing and storing a 
Message Queue Control Word (MQCW) at the address of the 
desired location of  the queue. The 64-bit MQCW has four fields, 
as shown in Figure 5. 

6362 42 41 21 20 0 

I'1 I ,imit2, I Thresho,d21 I 
L Signal 

Figure 5. Message Queue Control Word 

Tall is a relative offset that is added to the address of the MQCW 
to identify the next available slot in the queue. Tall must be initial- 
ized to a value greater than zero to avoid having the first arriving 
message write over the MQCW. The Tall pointer has a granularity 
of 64 bytes. It is incremented by one each time a message is stored 
into the queue. 

Limit is a 21-bit value that indicates the size of the message queue. 
Sizes up to (221 - 2) 64-byte messages are supported. When a mes- 
sage arrives, Limit is compared to Tail. If  Tall > Limit, the mes- 
sage is rejected and the Tail pointer is not incremented. If Tail < 
Limit, the Tail value is added to the global virtual address (GVA) 
of the MQCW to generate a new GVA for the message. This GVA 
is then translated by the GTB and checked for range errors prior to 
storing the message. If the message is accepted, an ack is returned, 
the message is stored and Tail is incremented. If the address is ille- 
gal, a nack is returned. 

Threshold is a soft limit which is generally set to a value < Limit. 
When a message is accepted, Tail is incremented and compared to 
Threshold. If Tall = Threshold, then an interrupt is delivered to the 
local processor, and the Signal bit is set to facilitate identification 
of the interrupting message queue. Messages are not rejected 
when Tall > Threshold. 

6.2 Sending a message 

Messages are transmitted by first assembling them in an aligned 
block of 8 E-registers and then issuing a SEND command. A 
SEND is similar to a Put command, except the memory address of 
the SEND must be a valid MQCW in memory. 

The block of 8 E-registers is delivered to the specified address, 
where it is stored into the message queue as described in 
Section 6.1. The read-modify-write of the MQCW and storage of 

the message are performed atomically, so no arbitration is required 
when multiple processors are transmitting to the same queue. 

When the SEND is issued, the state flags associated with the 8 E- 
registers are set to empty. When the response is received, if  the 
message was accepted, the flags are set to full, else the flags are set 
to "full-send-rejected". This can be detected by the sending pro- 
cessor and the message can be retransmitted. 

6.3 Message queue management 

The head of a message queue (next unread message) is maintained 
by software. As the local processor consumes messages, it incre- 
ments its head pointer until equal to the tall pointer. The processor 
is responsible for re-allocating message queue space when Tall 
approaches (or reaches) Limit. 

An atomic memory operation performed on a MQCW exactly 
affects the flow of messages to the corresponding message queue. 
If a swap is performed to redirect messages to a different portion 
of the queue, for example, the returned MQCW will represent the 
last message stored to the queue. No messages will be lost. 

A typical algorithm for managing a message queue is as follows. 
The processor first sets Tail and Limit to point to the first half of 
the queue. As Tall approaches Limit, the processor performs a 
SWAP to set Tall and Limit to point to the second half of the 
queue. It then consumes the residual messages from the first half 
of the queue. When Tail again approaches Limit, the processor 
performs a SWAP to switch to the first half of the queue, and so 
on. Other algorithms are of course possible. 

The MQCW/SEND mechanism allows users to set up multiple 
message queues of arbitrary size. Since message queues are held 
in normal memory space, no special access protection need be 
provided. By polling, users programs can use messaging with no 
operating system intervention, significantly reducing overhead. 
Measurements on the T3E have demonstrated one-way message 
latencies (half of a round-trip message exchange) to PEs three net- 
work hops away of 2.7 Its, including software overhead. 

7 Barrier/eureka synchronization 
Barriers allow a set of participating processors to determine when 
all processors have signalled some event (typically reached a cer- 
tain point in their execution of a program). Eurekas allow a set of 
processors to determine when any one of  the processors has sig- 
nalled some event. Users might use eurekas to signal the comple- 
tion of a parallel search. The operating system might use eurekas 
to interrupt some or all remote processors. 

Barriers are heavily used in many parallel applications, and their 
performance can affect the ability to the scale the application. As 
an example, we have worked with proprietary meteorological 
codes that perform on the order of one barrier every 200 Its in a 
128-processor system. At this rate, and additional 15 Its to per- 
form a software barrier (see Section 8) would add over 7% to the 
application runtime. 

7.1 Barrier/Eureka Synchronization Units 

The T3E provides a set of 32 barrier/eureka synchronization units 
(BSUs) at each processor. The BSUs are accessible as memory- 
mapped registers and are allocated and protected via the address 
translation mechanism. A set of processors can be given access to 
a particular BSU through which they can perform barrier and/or 
eureka synchronization. Multiple disjoint sets of processors may 
reuse the same logical BSU. 

A BSU at a processor can be in one of several states. Processors 
can read this state and perform operations on the BSU via load and 
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store operations. Tables 2 and 3 show a subset of the local states 
and operations. 

State Description 
S_EUR A eureka event came 

S_EUR_I A eureka came, interrupt signalled 

S_ARM Barrier is armed 

S_ARM_I Barrier is armed, an interrupt will occur on 
completion 

S_BAR Barrier just completed 

S_BAR_I Barrier just completed, interrupt signalled 

Table 2. Barrier/Eureka Synchronization Unit States 

Operation Description 
OP_EUR Send eureka 

OP_INT Set to interrupt when a eureka event occurs 

OP_BAR Arm Barrier 

OP_BAR_I Arm Barrier, interrupt on completion 

Send eureka and arm barrier OP_EUR_B 

Table 3. Barrier/Eureka Synchronization Unit Operations 

Figure 6 (a) shows the state transitions for a simple barrier. An 
OP_BAR takes a given BSU from the S_BAR state to the S_ARM 
state. When all participating processors have armed their barriers, 
the network delivers completion notifications that takes the BSUs 
to the S_BAR state, at which point the BSUs are ready for the next 
barrier synchronization. The barrier can be made to interrupt upon 
completion by joining it with the OP_BAR_I operation. 

A simple, re-usable eureka event, shown in Figure 6 (b), is a three- 
state transition that includes a barrier to establish that all proces- 
sors have seen the eureka before performing another eureka. Start- 
ing in the S_BAR state, a single processor performs an OP_EUR. 
This takes its BSU to the S_EUR state, and causes the network to 
deliver eureka events to all other participating BSUs, taking them 
to the S_EUR state as well. As processors observe the eureka, they 
indicate this by performing an OP_BAR. The triggering processor 
can perform a combined OP_EUR and OP_BAR using an 
OP_EUR_B. 

Once all processors have joined the barrier, the network delivers 
barrier notifications that place all BSUs in the S_BAR state, ready 
for the next eureka event. As with barriers, eurekas can optionally 
be set to interrupt upon notification. 

Note that the BSU interface allows "fuzzy" barriers, in which a 
processor can perform unrelated work between joining a barrier 
and checking for completion. 

7.2 Embedded barrier/eureka trees 

Rather than dedicate physical wires for barrier/eureka synchroni- 
zation, the T3E embeds logical barrier/eureka networks into the 
regular 3D torus interconnect. Small barrier/eureka packets are 
passed over the network to signal events. Barrier/eureka packets 
use their own virtual channel and are transmitted with highest pri- 
ority. This scheme keeps global barrier/eureka latency to less than 
that of a single remote memory reference, while making more effi- 
cient use of limited network wires. 

To embed the barrier/eureka trees in the network, each network 
router maintains a register for each of the 32 BSUs. This register 
allows the node to be configured as an internal node in the BSU's 

OP_BAR 

Barrier Completion 
Notification 

(a) Barriers 

OP_EUR or 
Eureka Notification 

(b) Eurekas 

Figure 6. Simple barrier and eureka local transitions 

logical tree. The register indicates which of the six network direc- 
tions plus the local processor are children in the tree, and which 
direction (if any) is the parent. It also keeps track of the set of chil- 
dren that have signalled a barrier. 

When all children have signalled a barrier, or when any child sig- 
nals a eureka, a corresponding signal is sent up to the parent (by 
sending the parent a barrier/eureka packet), or, if the node is the 
root of the tree, completion signals are sent to all of the children 
(also via barrier/eureka packets). Completion signals are broadcast 
hierarchically to all children in a barrier/eureka tree, and result in 
appropriate changes to the child BSUs, optionally interrupting the 
leaf processors. 

8 Performance 
This section presents performance measurements taken on early 
hardware. These measurements do not represent a complete per- 
formance profile of the T3E, but rather are intended to illustrate 
the efficacy of the primitives discussed in this paper. The absolute 
values of many of these measurements are likely to evolve, and, in 
particular, the DRAM timing parameters of the measured systems 
were set to less aggressive values than production systems will 
u s e .  

We used a series of small, micro-benchmarks to measure various 
communication and synchronization latencies and throughputs. 
Code was written in C and compiled using Cray's standard T3E 
compiler. Standard Shmem library routines were used for barriers, 
atomic memory operations and memory-to-memory copies. Mes- 
sage-passing was performed by manipulating the MQCW and 
shared memory directly from the C code. The memory pipelining 
and strided reference benchmarks used assembly-language kernels 
in order to efficiently schedule Gets and loads. 

With the exception of the barrier benchmark, all measurements 
were taken on a 20-processor machine, with 300 MHz processors. 
The barrier benchmark was run on a 64-processor machine built 
with prototype parts running at 200 MHz (50 MHz sysclock); 
results were scaled to reflect times on a full-speed system. 

Figure 7 shows the effect of pipelining on global memory band- 
width. The benchmark loads an array of 16K entries (128 KB) 
from a node three network hops away using vector Gets and E- 
register loads. The number of E-registers used to hide the latency 
is varied from 1 to 256. For 32 or more E-registers, a loop pream- 
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ble first issues Gets to all the E-registers. The main loop then 
repeatedly loads a block of 32 E-registers, issues Gets into the 
vacated E-registers and increments the block pointers. A loop pos- 
tamble loads the remaining E-registers values. 

350 - 

250- 

200- 

150- 

"~ 100- 

50- 
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2 4 8 16 32 64 128 256 

Numer of E-registers used 

Figure 7. Effect of pipelining in the memory interface 

Realized Get bandwidth increases with the number of E-registers 
used. Using 8 E-registers, the realized bandwidth is 32.8 MB/s. 
The round trip latency (time to store out the vector Get command, 
perform the Get operation from remote memory, load the 64 byte 
result into processor registers, plus loop overhead) is thus 64B/ 
(32.8 MB/s) = 1.86 Its. At this latency, 128 E-registers (1 kilobyte) 
provide sufficient buffering to sustain the maximum transfer rate, 
which appears to be limited by a bottleneck in the E-register con- 
trol logic. 

The relatively high latency for remote references t will limit band- 
width for smaller transfers. Figure 8 shows the effect of startup 
latency on realized bandwidth for memory-to-memory copies 
using the shmem_.get0 and shmem_put0 library calls. Source and 
target nodes are three network hops away (average distance in a 64 
processor machine). 
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Figure 8. Effect of startup latency on realized bandwidth 

The Get transfer performs stride-1 Gets from remote memory and 
Puts to local memory. The Put transfer performs stride-1 Gets 
from local memory and Puts to remote memory. The strided Get 
transfer performs stride-10 Gets from remote memory and stride-1 
Puts to local memory; each vector Get command is broken up into 
8 single-word Get packets that traverse the network separately. 

The stride-1 transfers achieve near asymptotic bandwidth for 
lengths of about 16 KB and beyond. The NI/22 is approximately 1 
KB. Due to the lower asymptotic rates, the strided Get transfer 

1. This is one metric by which the T3E is worse than the 
ECL-based T3D. 
2. Length for which 1/2 asymptotic bandwidth is achieved. 

achieves near peak bandwidth at about 4 KB, and has an N1/2 of 
approximately 256 bytes. 

Figure 9 illustrates the ability to load strided (or gathered) data 
into the microprocessor by first fetching it into aligned blocks of 
E-registers using strided vector Gets. The graph shows the asymp- 
totic bandwidth of local loads through E-registers vs. the stride of 
the reference stream. With cacheable references, of course, real- 
ized bandwidth falls off as stride increases because an increasing 
fraction of the cache line is ignored, resulting in a large-stride BW 
of only l/8th (for an 8-word cache line) of the stride-1 bandwidth. 
Using Gets, however, stride-independent bandwidth is possible. 
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Figure 9. Performance of strided memory references using 
E-registers 

The reduced bandwidth for certain strides in Figure 9 is an artifact 
of the local memory system, which contains 8 independent, sin- 
gle-word banks. All strides up to 16 are shown, as well as 28, 31 
and 32. Strides that are a multiple of 8 load all data from a single 
bank, and strides that are a multiple of 4 load all data from a pair 
of banks. Other strides use four or eight banks and achieve full 
bandwidth. 

As discussed in Section 4, E-register data is loaded with I/O space 
loads, which are less efficient than cacheable loads in the 21164 
processor. Cacheable memory loads can be performed at roughly 
twice the bandwidth of E-register loads in the T3E, so are prefera- 
ble for stride-1 or stride-2 reference streams. 

Figure 10 shows the performance of atomic memory operations. 
All 16 processors in this benchmark perform AMOs to the same 
synchronization variable located at processor 0. The graph shows 
average latency for an AMO vs. rate of operations. The maximum 
sustained rate of fetch_&_add operations is approximately 4.5 
Mops/s (222 ns per AMO). Fetch_&_inc has a lower latency, due 
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Figure 10. Atomic memory operation performance 

to its smaller network packet size and the fetch &_inc buffer at 
the memories, and has a substantially higher sustainable band- 
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width. Sixteen processors making one reference at a time were 
unable to saturate the memory system. By making pipelined 
requests, 16 processors were able to saturate the system at approx- 
imately 26 M fetch_&_incs/s (39 ns per fetch_&_inc). 

Figure 11 shows the performance of the SEND/MQCW messag- 
ing mechanism. In this benchmark, processors 1 through 15 
exchange pairs of messages with processor 0. The graph shows 
average round trip latency (processor x sends to processor 0, pro- 
cessor 0 receives message and sends a response message back to 
processor x, processor x reads the response message) vs. the rate 
of message exchanges. Round trip latency is approximately 5.5 ~ts 
and a maximum exchange rate of 932M/s was achieved. This cor- 
responds to an occupancy of 1.07 p.s at processor 0 to receive a 
message and send a reply. 
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Figure 11. Messaging per formance 

Figure 12 compares the performance of a software barrier with the 
T3E hardware barrier as the number of participating processors is 
varied. The software barrier is an efficient, log2(n) stage barrier 
based on Puts to shared memory. The latency shown is the average 
time to perform a global barrier over 50 consecutive barriers. At 
56 processors, the hardware barrier has approximately l/7th the 
latency of the software barrier. Extrapolation of the curves indi- 
cates that this factor will be about 15 for a 1024-processor system. 
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9 Related Work and Discussion 
We discussed the direct predecessor to the T3E in Section 2. This 
section discusses some other related work. 

Early message-passing machines, such as the NCUBE [37] or 
iPSC/2 [5], required operating system calls to perform any com- 
munication between processors. More recent systems have pro- 
vided user-level messaging facilities. The Connection Machine 
CM-5, for example, provides a user-level network interface via 
memory-mapping [46]. Message receipt, however, requires coop- 
eration of the remote processor, interfering with its work and 
necessitating tight coupling of the sending and receiving proces- 
sors [22]. 

The Alewife project at MIT addressed that issue in its messaging 
support by providing a fast interrupt mechanism in the Sparcle 
processor [2]. Similarly, the J machine [34] and the proposed 
interface of Henry and Joerg [16], integrate message handling 
mechanisms directly into the processors. These designs, of course, 
prohibit the use of commodity processors. Other system designs, 
such as the Intel Paragon [21], Meiko CS-2 [20] and *T [33] dele- 
gate message processing to a dedicated coprocessor. 

All of the above designs require that messages be processed in 
order as they arrive. The T3E, on the other hand, deposits incom- 
ing messages directly into their specified queues in user memory. 
This decouples message receipt from the compute processor, 
allowing it to process messages when it is ready, and allows effi- 
cient receipt of messages not belonging to the current process. By 
controlling the MQCW interrupt thresholds or polling frequency, 
software can also listen to different message queues with varying 
attentiveness. This mechanism combines the flexibility of shared 
memory with the one-way latency of message passing. The price 
for this flexibility can be increased latency over a more tightly 
integrated design; all messages go through the local memory 
before being consumed by the processor. 

The mechanism in the T3E for sending messages is quite similar 
to those in Alewife, the NIC (network interface chip) [16] and oth- 
ers; the message is first assembled by writing it into a set of exter- 
nal registers and then atomically launched into the network. This 
mechanism is as fast as can be expected without custom modifica- 
tion of the processor. 

A number of other recent, large-scale machines have provided 
direct, hardware support for shared memory. These include the 
Stanford DASH [26], Kendall Square KSR-1 [23], MIT Alewife 
and HP/Convex Exemplar. One noticeable difference between 
these systems and the T3E is that they cache remote data, while 
the T3E does not. These machines rely on locality of reference, 
and provide very little pipelining in the global memory subsystem. 
In addition, cache coherence interactions can degrade perfor- 
mance of explicitly parallel codes with software-managed com- 
munication. 

The T3E instead emphasizes sustainable memory and communi- 
cation bandwidth. E-registers support pipelined global memory 
requests and the stream buffers and lack of a board-level cache 
increase local memory bandwidth. Performance on the T3E is 
likely to suffer by comparison on dynamic, irregular codes, and 
shine on memory-intensive codes and/or codes with large amounts 
of inherent communication. 

We are not aware of other machines that include centrifuge sup- 
port for controlling data distribution. The RP3 had a simpler 
mechanism that allowed pages to be either allocated at one node or 
interleaved across some number of nodes in their circular, dance- 
hall interconnect [39]. The mechanism for performing E-register 
commands in the T3E is similar to that in the NIC [16]. Both of 
these designs use the address of a load or store to specify a com- 
mand and an external register number. In the NIC, the data path is 
used to move message data between the processor registers and 
network interface messaging registers (similar to E-register loads 
and stores in the T3E). The T3E also uses the data path for storing 
global memory addresses for E-register operations. This method 
of extending the physical address space of the microprocessor by 
storing virtual addresses and using remote hardware translation is 
unique as far as we know. 

The Stanford FLASH [25] and Wisconsin Typhoon [42] designs 
incorporate fully functional, programmable protocol processors at 
each node. This provides the flexibility to implement any number 
of protocols and communication/synchronization mechanisms. 
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While this is a particularly valuable feature for a research vehicle, 
and offers the promise of protocols tailored for specific applica- 
tions, the performance of a protocol processor in unlikely to match 
that of a hardwired implementation. The estimates in the FLASH 
paper [25], for example, indicate that protocol processor occu- 
pancy in most cases is just hidden by the transfer time for the 128- 
byte cache lines. A smaller transfer unit or a faster memory pipe 
would expose the processing latency and create a bottleneck. The 
T3E provides support for single-word (8 byte) memory transfers, 
necessitating the hardwired approach. The FLASH and Typhoon 
projects also differ from the T3E in their focus on global cache 
coherence and lack of emphasis on pipelining in the memory sys- 
tem. 

Previous machines have provided mechanisms for global proces- 
sor synchronization. The CM5 has a separate control network that 
provides barriers and other synchronization [46]. Our opinion (as 
evidenced by the change from the T3D) is that the performance of 
a separate dedicated network does not justify the cost. 1 The CM-5 
control network is also single user, requiring that it be drained and 
saved on a context switch. T3E barrier state does not require sav- 
ing on a context switch, and all synchronization variables are held 
in normal user memory. The RP3 [39] and NYU Ultracomputer 
[15] both included multi-stage combining networks in their 
designs. While general combining networks are quite powerful, 
they can be expensive and/or complex to implement (the IBM 
group estimated that it would increase their switch cost by 6-42 
times in the technology of the day [40] 2 and later dropped the 
combining network). The (inexpensive) T3E barrier network is of 
course a special case of general combining networks. Coupled 
with a rich set of atomic memory operations and scalable, soft- 
ware synchronization algorithms [30][32] where necessary, this 
appears to be a good solution. 

10 Summary 
This paper described the communication and synchronization fea- 
tures of the Cray T3E, a distributed shared memory multiproces- 
sor scalable up to 2048 processors using a high-bandwidth, 3D 
torus interconnect. The T3E uses a commodity microprocessor 
surrounded by a custom shell - based on a large set of external 
registers (E-registers) - that allows the processor to fit more natu- 
rally into a large-scale system. 

E-registers provide two main features: they extend the address 
space of the microprocessor to support very large machines, and 
they dramatically increase the available pipelining in the memory 
system. They also serve as the interface for message sending and 
atomic memory operation synchronization. 

The E-registers support up to several kilobytes of outstanding glo- 
bal memory references and can efficiently support single word 
accesses (strides and gathers). The integrated centrifuge and 
remote address translation allow the entire physical memory of the 
machine to be accessed without a TLB fault. The centrifuge sup- 
ports simple addressing for message-passing codes (PE field in the 
upper bits of the address) and more complicated distributions for 
languages such as HPF. 

Messaging in the T3E is tightly integrated with the shared mem- 
ory and is performed at user level. Message queues reside in nor- 
mal shared memory, and can be of arbitrary size and number. 

1. Another way to view this, is that for the same cost, overall 
performance would be better served by dedicating all the 
wires to the primary communications network. 
2. Surely this would be less expensive today with the use of 
high-density CMOS ASICs. 

Message transmission, however, involves only a single, one-way 
traversal of the interconnect; arbitration for queue space, storage 
of the message, and notification of the remote processor (by inter- 
rupt or by polled status) are performed atomically by the hard- 
ware. Of course, using the shared memory and synchronization 
primitives, other implementations of messaging such as "receiver- 
pull" are possible. 

The T3E provides a rich set of atomic memory operations, includ- 
ing the universal primitive compare_&_swap. These operations 
can be performed on any memory location and have an observed 
sustainable rate of approximately one per 200 ns (one per 40ns for 
fetch_&_inc). 

Perhaps the most important synchronization primitive in the T3E 
is the hardware barrier. The hardware barrier outperforms a hierar- 
chical software barrier by a factor of 7 with 56 participating pro- 
cessors, and extrapolations indicate that the factor will grow to 
approximately 15 with 1024 participating processors. Moreover, 
because the barrier trees are virtual, using packets over the exist- 
ing data network, the hardware barrier is almost free. The only 
cost is a set of registers and a small amount of logic on each of the 
router and control chips. 

Finally, a number of features have been designed to ease the task 
of the operating system. Remote memory translation and the mag- 
ical memory mover allow each node to independently manage its 
own physical memory. This eliminates the TLB shootdown prob- 
lem and significantly simplifies shared memory allocation. Virtu- 
alizing the barrier networks relieves the burden of managing 
access to the physical barrier network; there are multiple virtual 
networks and their embedding is completely flexible. Lastly, sev- 
eral features of the T3D have been moved from the system to the 
user domain: bulk data transfer is now performed using E-regis- 
ters, and message queues and synchronization variables are held in 
normal user memory. 
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