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An imerrupl Is precise if the saved process state corresponds with 
the sequcnnal model of program execution where one insrruction com- 
pletes before the next begins. In a pipclined processor. precise intcr- 
rums are diffcuh IO achmve baause an insrrucuon may be inirirmd 
before us predecessors have been completed. This pager describes and 
evaluates solunons IO the precise interrupt problem in pipclincd proccs- 
SOCS. 

The prccrse tntcrrupt problem is first described. Then live solu- 
tions are discussed tn detail. The first forces mstructions to complcte 
and modil) the process SUIC in archiIaIural order. The other four 
allow instructions IO complete in any order. bu1 additional hardware is 
used so IhaI a precise SUIC can bc restored when an interrupt occurs. 
All the methods are drscussed in the context of a parallel pipeline struc- 
ture. Simulauon resuhs based on the CRAY-IS solar archueaurc are 
usal IO show IhaI. a1 Hess. the first solulion results in a performance 
degradation of about 16%. The rcmnining four solulions offer similar 
performance, and Ihrcc of them rcsul1 in as linle as a 3% performance 
loss. Several cxtenstons. including virtual memory and linear pipeline 
structures, arc briefly discussed. 

1. Introduction 

Most currem computer architmurcs are based on a scquenIial 
model of program execution in which an archrtcmural program counIer 
scqucnces through instructtons one-by-one, finishing one before stan- 
ing the next. In conIras1. a high performance implemcntaIIon may be 
pipclined. prmmutg several instructions 10 be in some phase of cxccu- 
lion 81 the same time. The use of a sequential architecture and a pipe. 
lined implcmenudon clash at the time of an interrupt; pipclincd 
instruaions may modify the proms rule in an order diffcrcnt from tl181 
defined by the scqucnlial archircmural model. Al the time an interrupt 
condition is dcIected. the hardware may no1 bc in a state thac is mn- 
sistcnc wiIh any specific program counicr value. 

When an intmupt occurs. the sUIc of an interrupted proms is 
Iypiully saved by the hardware, the &ware. or hy a combination of 
UIC two. The process stau generally consists of the program couuIcr. 
rcgiracrs. and memory. If the saved process SIaIc is conrisienf widi the 
Kquential archimctural model ~hcu :hc io~errup is precist. To be more 
specific. Ihe saved suue should rcflcu Ihc following condiIions. 

(1) 

(2) 

(3) 

All insbunions pracding the instruaion indieaud by the & 
program counter have been cxccu~ed and have modified Ihc pro- 
was state corrady. 

All instructrons following the instruction indicated by the saved 
program counIcr arc unexecuted and have nor modilicd thcpro- 
aa sIaIc. 

If the interrupt IS caused by an cxccption condition raised by an 
insIrucIion in Ihe program. the saved program munler points IO 

the imcrruptcd insuuaion. The inurrupmd instruction may or 
may not have been cxautcd. depending on the definition of Ihe 
arcbitaturc and the cause of the intcmtpt. Whkbcvcr is the 
case. the intcrruptcd instruction has either complctcd. or has not 
swtcd cxsutiott. 

If the saved proccsr mu? is inconsistent wiIh the sequential l rchitec- 
rural model and does noI satisfy the above condirions. rhen the intcrrupl 
is imprecisr. 

This paper dcsuibcs and comparcs ways of implemmting precise 
inlerrupu in p&lined proecssors. The mcchods used arc dcsigncd IO 
modify che note of an cxeculing process in a carefully cootrolled way. 
The simpler methods force all instructions to update the pracss state in 
the architectural order. other. more complex mahods YH ponions of 
the proass stan so lhm the proper sute may be resscucd by the 
hardware a1 the time an intcrrupc occurs. 

1.1. Clnrritic~lion of interrupts 

(1) 

0) 

WC consider interrupts belonging IO Iwo classes. 

Progmm inremcprs, somctimcs refemd 10 as ‘traps’, result from 
txctphon cond~dons dncemd during fetching and uccution of 
spozific instructions. There exceptions may be due IO software 
errors, for example trying IO cxautc an illegal opcodc. numerical 
errors such as overflow. or they may be part of normal execution. 
for example page faults. 

Exrtmol inwrrupu are no1 caused hy specific instructions and are 
often caused by sources outside the currently exaunng process. 
somcumes complcIely unrclaced IO i1. I/O inrrrupu and timer 
inurrupts arc examples. 

For a spccilic l rchbccturc, all iamrrupts may be ddincd to bc 
prccisc or only a proper subsc~. Virtually every arcbitenurc, howcvcr. 
has some types of interrupts that must be precise. There are a number 
of conditions under which prccisc intcnupu are either neoccwry or 
duirable. 

(1) 

(2) 

(3) 

(4) 

(9 

For 110 and timer inccrrupts a praise process SIUC makes m- 
urting possible. 

For sofnvarc debugging i1 is desirable for the saved Stale 10 bc 
pmise. This information can bc helpful in isolating the •X~I 
instruaion and circumrunecr that caused the excepion condition. 

For graceful rccovmy from arithmetic exccpdons. sofnvare rou- 
rincs may bc able IO take mepa. re-sole floating point numbers 
for cxamplc. to allow a proocss to continue. Some end cnscs of 
modem floating poin1 l rhhrnetic sysums might bcs~ hc hat~dlcd 
by rofrwrrc; gradual underflow in the proposed IEEE floating 
point standard [S~cvgl], for example. 

In virtual memory systems precise interruplr allow a process to 
bc corrcmlp rcs~artcd ahcr a page fault has been serv~ccd. 

Unimplemented oncodes can be simulated by system software in a 
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way transparent to the programmer if interrupts are precise. In 
this way. lower performance models of an erchitecrure can mein- 
tain compatibility with higher performance models ustng extended 
instruction sets. 

(6) Virtual machines can be implemented if privileged instruction 
faults cause praise interrupts. Host software can simulate these 
instructions and return IO the gum1 operanng system in e user- 

lrenrparenr way. 

1.2. Hislorial Survey 

The prectse interrupt problem is as old as the first pipelined com- 
puter and is mentioned es early es Stretch lBuch62). The IBM 360/91 
[Ande67] was e well-known computer that produced imprecise inter- 
rupts under some circumstances. floating point exceptions. for exam- 
ple. Imprecise interrupts were a bruk with the IBM 360 architecture 
which made them even more not&able. All subsequent IBM 360 and 
370 implementations have used less aggressive pipeline destgns where 
instructions modify the process state in strict program order. and ell 

interrupts are precise.’ A more complete description of the method 
used in these ‘linur” pipeline implementations is in Section 6.4. 

Most pipelined implementations of general purpose archittnura 
are similar IO those used by IBM. These pipelines constrain all 
instructions IO pass through the pipeline in order with e stage II the end 
where exception conditions are checked before the process state is 
modified. Examples include the Amdahl 470 end 580 
(Amdh81.AmdhSOJ and the Gould/SE1 32/87 lWard82]. 

The high performance CDC 6600 lfhor70). CDC 7600 
fBons69]. and Cray Research (Russ78. Cray791 computers allow 
instructions IO complete OUI of the architectural sequence. Conse- 
quently. they have some exception conditions that result in imprecise 
interrupts. In these machines. the advantages of precise interrupts have 
been sacriliced in favor of maximum parallelism and design simplicity. 
I/O interrupts in these machines are precise. end they do not imple- 
ment vinuel memory. 

The CDC STAR-100 ]HiTa72] and CYBER 200 [CDCSI] series 
maehines else allow instructions IO complete OUI of order. end I@ do 
support virtual memory. In these machines the use of vector 
instructions futtber compliutes the problem, and all Ibe difftculdes 
were not fully recogniaed until late in the development of the STAR- 
100. The evmuual solution was the addition of an invisible exchmI,fr 
pac&ge (CDCSl]. This captures machinedependent state information 
resulting from penially completed instructions. A similar approach has 
more recendy been suggested in MIPS [Henn82] where pipeline infor- 
metion is dumped II the time of an interrupt and restored to the pipeline 
when the process is resumed. This solution makes a process restartable 
altbougb it is l rguable whether it has all the futures and advantages of 
an rrcbitamtrally precise interrupt. For example, it might be neces- 
sary IO have implementadondependen1 software sift through the 
ma&inedependenI state in order to provide complete debug informa- 
tion. 

The recently-announced CDC CYBER 1801990 [CDC84] is a 

pipelined implementation of a new architecture that supports virmel. 
memory, and offers roughly the same performance as l CRAY-IS. To 

provide prectse interrupts. the CYBER 18OKKJO uses a history buffer, 
IO be described later in this paper, where state informetion is saved just 
prior IO being modified. Then when an interrupt occurs. this ‘history” 
information can be used IO back the system up into e precise sure. 

1.3. Paper Overview 

This paper concentrates on explaining and discussing basic 
mahtxis for implementing precise interrupts in pipelined processors. 
We emphesim solar architectures (as opposed to vector architectures) 
beceuse of their applicability IO a wider range of machines. Soztion 2 

describes the model architecrure IO be used in describing prectse inter- 
rupt implementations. The model architecture IS vety simple so that the 
fundamentals of the methods can be clearly described. Sections 3 
through 6 describe methods for implementing prectse interrupts. Set- 
Iion 3 describes a simple method the! is easy lo implement. but which 
reduces performance. lr forces Instructions 10 complere in archttcctural 
order which somenmes inhibits the degree of parallelism in a pIpelined 
system. Section 4 descrtbes a higher performance variation where 
results may be bypassed IO other instructions before the results are used 
IO modify the process state. Sections 5 and 6 describe methods where 
instructions are allowed IO complete in any order. but where state infor- 
mation is saved so that a precise state may be restored when an inter- 
rupt occurs. The descrtptions of these methods assume that the only 
state informauon is the program counter. general purpose registers. 
and matn memory. The methods are also discussed In the absence of a 
deu cache. Section 7 presents stmulation results. Experimental results 
based on these CRAY-IS simulations are presented and discussed. 
Section 8 contain e brief discussion of 1) saving additional state infor- 
mation. 2) supporting virtual memory, 3) precise interrupts when a 
data cache is used, and 4) linear pipeline structures. 

2. Preliminaries 

2.1. Model Archileclure 

For descrtbing the various techniques. a model architecture is 
chosen SO that the basic methcds are not obscured by details and 
unnaessery complications brought about by e specific architecture. 

We choose a ’ register-register architsture where all memory 
accesses are through registers end all functional operations involve 
registers. In this respect it bears some similarity IO the CDC and Gray 
architecrurcs. but has only one set of registers. The load instructions 
are of the form: Ri = fRj+disp). That is. the wntent of Rj plus a dis- 
placement given in the instruction are added IO form an effecrive 
address. The wnrent of the addressed memory locarion is loaded into 
Ri. Similarly. a store is of the form: (Rj + dirp) = Ri. where Ri is 
stored a1 the address found bv adding the wntent of Rj and a displacc- 
ment. The functional instructions are of the form Ri - Rj op Ilk, 
where op is the operation being performed. For unap operations. the 
degenerate form Ri = op Rk is used. Conditional instructtons are of 
the form P = disp : Rj op Rj. where the displacement is the address of 
the branch target: op is a relational operator. = , > , c , etc. 

The only process sum In the model architecrure consists of the 
program counler. the general purpose registers and main memory. 
The l rchnecturc is simple, has a minimal amount of process stale. can 
be easily pipelined. and can be implemented in a srretghtforward way 
with parallel funcnonel units like the CDC end Cray architectures. 
Hence. implemennng precise interrupts for the model architecture 
pmenrs a realistic problem. 

Initially. wc assume no operand cache. Similarly. condition 
codes are not used. They add other problems beyond precise interrupts 
when a pipetincd unplen1entauon is used. Extenstons for operand 
cache and condition codes are discussed in Section 8. . 

The implementaIIon for the simple architecture is shown in Fig. 
1. 11 uses an instruction fetch/decode pipeline which processes instruc- 
nons in order. The last stage of the fetch/decode pipeline is an issue 
register where all register interlock conditions are checked. If there 
are no regtster conflicts. an instructton issues IO one of the parallel 
functional units. Here. the memov access function is implemented as 
one of the funcuonal unns. The operand registers are read a1 the time 
an instructton Issues. There is a single result bus that returns results to 
the regtster ftle. This hus mav be reserved a1 the ome an instruction 
issues or when an instructjon is approachmg completion. This 

assumes the funcuonal unit times are deterministic. A new instruction 
an issue every clock period in the absence of reftster or result bus 
conflicts. 
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INStRUCTION 
FETCH/nECOIlE 

I I REGISTER 

FILE 

r- 

FUNCTIONAL UNIT 1 

@=I- 

II FUNCTIONAL UNIT 2 

-Yml- 
I RESULT ElLlf 

Figure 1. Pipelined rmplemcntaoon of our model architecture. Not 
shown is the result shift regtstcr used IO control the result bus. 

Example I 

To demonstrate how an imprecise process state mav occur in our 
model architecture. consider the followtng sectton of code which sums 
the elements of arrays A end B into array C. Consider the tnstructionr 
in statements b and 7. Although the integer add which increments the 
loop count will be issued after the floaunp point add, it will complete 

Cotttmettu Eeauu 
TlItu 

0 Rz <-0 Init. loop indea 
1 RO<-0 Init. loop wunt 
2 R5 <- I Lonp inc. v~ltte 
3 R7<-100 Muimum loop wunt 
4 11: RI<-(R2+A) W AC0 14 
5 R3<-(It2 + B) W Bfl) llcp 
6 R4 <-RI +fSU Floniag odd ss, 
7 RO<-RO+ R5 Inc. loop count 2cp 
8 (RO + C) <- R4 store C(I) 
9 Iu<-R2+R5 Inc. loop index 2cp 

IO P- 11 : RO !- R7 wnd. branch not quJl 

before the floating point add. The integer Jdd will therefore change the 
praess state before an overflow condition is detected in the flomtog 
point add. In the event of such an overflow, there is en imprqise 
interrupt. 

2.2. Interrupts Prlor to Instruction Issue 

Before proceeding with the various precise interrupt methods, we 
discuss interrupts the: occur prior IO instruction issue sepJn:ely 
because they are handled the same way by all the methods. 

In the pipeline implementation of Fig. 1. instructions stay in 
sequence until the nme they arc issued. Furthermore. the process mu 
is not modified by an instruction before it issues. This makes precise 
interrupts a simple maner when an exception condition can be detected 
prior to issue. Examples of such exceptions are privileged instruction 
faults and untmplemented instructions. This class also includes exter- 
nal interrupts which can be checked et the issue stage. 

When such an uncrrupt condition is detected, instructton issuing 
is halted. Then, there is a wan while all previously issued instructions 
COmpleU. After they have completed. the process is in a prectse Mu. 

with the program counter value corresponding IO the tnstrucnon being 
held tn the tssue regtster. The registers end main memory are tn a 
suu conststent with this program counter value. 

Beuusc excepuon conditions detected prior IO tnstrucnon on be 
handled easily as descrtbed above. we will not consider them my 
further. Rather. we will concentrate on exceptton conditions detmed 
after insaucr~on issue. 

3. In-order Instruction Completion 

With this method. instructions modify the process sute only when 
all prevtouslv issued tnstrucuons arc known IO be free of cxcepnon con- 
ditions. This sectton descrther a strategy that is most easily imple- 
mented when pipeline delays in the parellel funcnonal unrts are fixed. 
Thrt IS. they do not depend on the operands. only on the function. 
Thus, the result hur can br reserved at the umc of issue. 

First. we consider a method commonly used IO control the pipe 
lined organiunon shown in Fig. I. This method may be used reprd- 
less of whether precise interrupts are IO be implemented. The precise 
interrupt methods dcscrihed in this papr are mtegreted into this basic 
control srretcgv. however. To control the result bus. a “result shift 
register” IS used: see Fig. 2. Here. the stages are labeled I through n. 

01RLc-r1oN T- w 

Figure 2. Result Shifi Register 

where n is the length of the longest functional unit pipeline. An 
instructton the: ukes I clock periods reserves sugc i of the result shifi 
regtster et the time it ISSUCS. If the stage already conuins valid control 
information. then issue is held until the next clock period. end suge i is 
checked once again. An issuing instruction places wntrol information 
in the resuh shift regtster. This control informeoon identilies the fttnc- 
tional unit that will be supplving the result and the destinrrion register 
of the result. This control informanon is also marked ‘valid” with e 
validity bit. Each clock period, the wntrol informanon is shifted down 
one sugc toward stage one. When it reaches slage one. it IS uti dur- 
in@ the next clock IO control the result bus so that the functional unit 
result is placed in rhe wrrect result register. 

Still disregarding precise interrupts, it is possible for J short 
instruction IO be placed in the result pipeline in suge i when previously 
issued instructions are in suge j. j > i. This leads to instructiotts ftn- 
ishing out of the original program sequence. If the instruction et stage 
j mnttully enwunters en exception condition, the interrupt till be 
imprecise kuuse the instruction pleeed in suge i will complete Jnd 
modifv the process stale even though the squentiel archnecture model 
says i does not begin until j completes. 

Example 2 

If one considers the section of code presented in Eumple 1. end 
en initially empty result shift regtster (all the entries invalid). the llo~l- 
ing point add would be placed in stage 6 while the integer add would be 
placed in stage 2. The result shift register entries shown in Fig. 2 
reflect the state of the result shift regtster after the inuger add issues. 
Notice that the floating point add entry is in stage 5 since one clock 
period has passed since it issued. As described above. this SUUJtion 
Leeds IO instructions finishing out of the original program squence. 
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3.1. Re@sters 

To implement prectse mrerrupts with respect IO registers using 
the above pipeline control structure. fhe control should “reserve” stages 
i < j as well as stage j. That is. the stages I < j that were not previ- 
ously reserved by other instructions are rcservtd. and they are loaded 
with null control informrtton so that they do not affect the process stale. 
This guarantees that tnstructrons modifying regtsters finish in order. 

There is logic on the result bur that checks for exccptlon condi- 
tions in ins1ructions as thev complete. If an mstruction contams a 
non-masked exception condition. then conlrol logic “cancels’ all subsc- 
quent instructtons comtnp on the result hus so that they do not modif! 
the process state. 

Fhmplc 3 

For our sample section of code given in Example I. assuming the 
the result shift regtster is initially empty. such a policy would have the 
floating point add instructton rescrvc stapes 1 through 6 of the result 
shih register. When. on the next clock cycle. the integer add is in the 
issue register. II would normally issue and reserve stagr 2. However. 
this is now prohihited front happenmf because stage 2 is alread) 
reserved. Thus, the tnteper add must wait II the issue stage until stage 
2 of the result shih refuster is no longer resened. This would be 5 
clock periods aher the issue of the floating point add. 

A generalization of this method is to determine. if possible. that 
an tnstruction IS free of exceptton conditions prior to the time it IS com- 
plete. Only result shih regtster stages that will finish before exceptions 
are detected need IO be reserved tin addition to the stage that controls 
the result). 

3.2. Main Memory 

Store instructions modify the ponion of process stale that resides 
in main memory. To implement precise interrupts with respect IO- 
memory. one solution is to force store insmtaions to wait for the result 
shift register IO be empty &fore issuing. Alterttati~rly. stores can issue 
and be held in the load/store pipeline until all preceding instructions 
arc k~~own to be exception-free. Then the store can be released IO 
memory. 

To implement the second alternative. recall that memory can be 
treated as a special functtonrl unit. Thus. as with any other instruc- 
tion, the store can make an entry in the result shift register. This entry 
is defined as a dummy store. The dummy store does not cause a result 
to k placed in the registers. but is used for controlling the memory 
pipeline. The dummy store ts placed in the result shift regtster so that 
it will not reach stage I unril the store is known to be exception-free. 
When the dummy store reaches stage 1. all prewous instructions have 
completed without exceptions. and a signal is sent to the load/store unit 
to reluse the store IO memory. If the store itself contams an exception 
condition. then the s1ore is unallcd. all following load/store instruc- 
tions are cancelled. and the store unit signals the pipeline control so 
that all insrructions issued subsequcnr to the store arc cancelled as they 
leave the result pipeline. 

3.3. Program Gwnar 

To implemcm precise intcrrttpts with rapect IO the program 
counter. the result shih register is widened IO include a field for the 
program counter of each rnstruction (see Fig. 2). This field is filled as 
the tnstrucuon ISSUCS. When an instruction with an exception condition 
appears at the result bus. us program counter is atailahlc and becomes 
pan of the saved state. 

4. The Reorder BuNer 

The prtmarv disadvantagr of the abow method is that fast instruc- 
uons may sometimes get held up at the issue repister even though the! 
have no dependenctes and would othenviv issuc. In addiuon. the\ 
block the lssuc rcgistcr while slower instruction% hehind them could 
conceivahlv tssuc. 

This leads us to a more complex, but more general solutton. 
hlrucllOn~ arc allowed to linish OUI of order. but a special buffer 
called the r@~rUcr bu/?Cr is used to reorder them before they modify the 
process SWIG. 

4.1. Basic Method 

The overall orl?antration is shown in Fig. 3a. The reorder buffer. 
Fig. 3b. is a ctrcular buffer with head and tail pomters. Entrtes 
between the head and tail are consrdered valid. At instructton issue time 
the next available reorder buffer enuy. pointed IO by the tail pointer. IS 
given IO the issuing tnstruction. The tail pointer value IS used as a tag 
IO identify the emry in the buffer reserved for the instruction. The tag IS 
placed in the result shih rcgtstcr along with the other control informa- 
non. The tail pointer is then incremented. modulo the bttficr sixe. 
The result shift regtster differs from the one used earlier because there 
IS a field contamin~ a reorder tap tnstead of a field spccihrinp a destina- 
tion rcgisler. 

I !a&’ 
REGI!VER 

(8) 

. . . . . . 

. . . . . . 

DIRECTION 
a= 

HGKKNT 

1‘ 

REwmER BLSTER 

I I STRGE pJ$cc%& 1 UALID 1 TRG 1 

GGISJLT SnIFT REGISTER 

(b) 

Figure 3. (a) Rcordcr Buffer Organization. fb) Reorder Buffer and 
assoclarcd Result Shih Regtster. 
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When an m.suucuon compMcs. both re~~lrs and cxcepuoo condi. 
lions are sent IO the reorder buffer. The taf from the result shah regts- 
ter IS used IO gwdc them IO the corrccf reorder buffer envy. When the 
entry ar the head of rhc reorder buffer comalns vahd results (IIS tnslruc- 
tion has linlshed) then ~(s excepuons are checked. If there are none. the 
results are wrmen m;o the rcglsters. If an exccptlon is derecled. issue is 
stopped in preparauon for the mterrupL and all further rrrtes into the 
register file are inhibited. 

&ample 4 

The entries m the reorder buffer and result shift reelster shown 
in Figure 3b reflect thclr state aher the tntegcr add from Example 2 has 
issued. Kottce rhaf rhc resuh shift regrslcr entries are very sunrlar IO 
those In the Figure 2. The Integer add will complete executton before 
the floaung pomc add and IIS resuhs will be placed m entry 5 of the 
reorder buffer. These rcsul~s. however. will not be wrmcn Into RO 
until the floatmg pm, result. found In entry 4. has hccn placed in R4. 

4.2. Main Memor! 

Preciseness wfh respect IO memory IS mamlamcd III manner 
similar IO fhat m the m-order compleuon scheme (Secnon 3.2). The 
simplest method holds stores m the tssue repsrer unnl all prcwous 
msfrucuons are known IO be free of cxceptlons. In Ihe more complex 
method. a store sIgnal IS sent IO the memory plpclrne as a “dummy” 
store IS removed from the reorder buffer. Sfores arc allowed IO ISSUC. 
and blocA in the sforc prpclmr prror IO hemp commmcd IO memor! 
while lhe\ ualt for thelr dummy counterpart. 

4.3. Program Counter 

To mamtam prcclseness with respect IO the program counter. the 
program counter can be sent IO a reserved space in the reorder buffer al 
issue time (shown in Ftgurc 3b). While the program counter could be 
sent IO the result shih rcgrsuzr. if is eapccled that the resulf shih register 
will contam more stages than !hr reorder huffcr and thus rqutre more 
hardware. The length of the resulf shih repaver must he as long as the 
longest pipchnr stage. As will be seen m Sccnon 7. the number of 
entrzs in the reorder buffer can be qultc small. When an instruction 
arrives ai the head of the reorder buffer with an exceptton condition, 
the program counter found m rhe reorder buffer entry hecomes pan of 
the saved orectse state. 

4.4. B-ypass Paths 

While an Improvement over the method described in Section 3. 
the reorder buffer sull suffers a performance penal?. A computed 
result thai IS generaad OUI of order IS held m the reorder buffer untd 
prevtous msvucuons. finishing later. have updated the rcglster file. An 
inscrucGon dependent on a result being held in the reorder huffcr can- 
noi issue until the resulf has been wrmen into the re,y.ter file. 

The reorder buffer ma). h- r. be modified IO mmimrze some 
of the drawbacks of finishing struztly in order. For results IO be used 
early. bypass paths may be provided from the entrIes in the reorder 
buffer IO the rcglstcr file output latches. see Fig. 4. These paths allou 
data king held in the reorder buffer to be used in place of register 
data. The implementation of this method rquires comparators for each 
reorder buffer stage and operand designaror. If an operand regiaer 
designator of an instruction being checked for issue matches a regirter 
designator in the reorder buffer, then a multiplexer IS set IO gaie Ihe 
data from the reorder buffer 10 the register output latch. In the absence 
of other issue blockage condiuons. rhe instruction IS allowed IO issue, 
and the data from the reorder data IS used prior IO bemg wrmcn into the 
register file. 

There mav be bypass parhs from some or all of the reorder buffer 
entries. If muliiple bypass paths CXISI. it is possible for more than one 
dcsdnalion entry in the reorder buffer to correspond IO a single reals- 
ter. Clearly onlv the /o~sr reorder buffer entry that corresponds 10 an --_ _--.--- 
operand destgnaior should generate a bypass path lo the register OUIpul 
latch. To prevent muluple bypassmg of Ihe same reeler. when an 

REGISTER 
> 

FILE 
SOLRCE DATA 

TO FLJNCTIONftL UNITS 

Figure 4. Reorder Buffer Method with Bypasses. 

inslrucnon is placed m the reorder buffer, any en~rles ~lth Ihe same 
destination register dcslgnaior muv be inhibited from matching a 
bypass check. 

When bypass paths are added. preciseness with respccc IO the 
memory and the program coumer does not change from the previous 
method. 

The grcatesc disadvantage with this method is the number of 
bmss comparators needed and the amount of circuitry required for the 
multiple bypass check. While this clrcujtry is conccpfually simple. 
there is a grcrii deal of II. 

5. History Buffer 

The methods presented in this section and the next arc miended IO 
reduce or eliminste performance losses experienced with a simple 
reorder buffer, but without all fhe control logs needed for multiple 
bypass paths. Primarily. these melhods place computed results in a 
working replster file. but retam enough state Information so a precise 
state can he restored if an excepuon occurs. 

Fig. Sa illustrates the hIslo? buffer melhod. The hIstory buffer 
IS organized in a manner ver\ stmilar IO the reorder buficr. AI ~ISUC 
time, a bufier cntr! IS loaded with comrol informriton. as with the 
reorder buffer, but the value of the desfmauon reFis,er (soon 10 be 
overwrmen) IS also read from Ihe register file and wrmen into thr 
buffer entry. Rcsulis on the resuli bus are wrmcn duectly into the 
regtster file when an mslructaon completes. Exccpuon reports come 
back as an instrucuon compleles and are wrinen Into Ihe hIstory buffer. 
AS with the reorder buffer. Ihe exception reports are guided 10 the 
proper history huller emry through the use of tags found in the resuh 
shift register. When the history buffer comains an element al the head 
that is known 10 have tinishcd without cxccprions. the hlsrory buffer 
entry is no longer needed and fhai buffer locadon can he rc-used (Ihe 
head pointer IS incremented). As with the reorder buffer. the history 
buffer can be shoner than the maxImum number of pipeline stages. If 
rll history buRer entrzs are used (the buffer is too smrll). issue musl 
be blocked until an entry becomes available. Hata the buffer should 
be long enough so that this seldom happens. The effect of the history 
buffer on performance is determmed in Section 7. 

Example 5 

‘The entrIes in the history buffer and resub shih regisier shown 
Fig. Sb correspond 10 our cede in Example 1, affcr the imegcr add has 
issued. The only differences bcrwun this and the reorder buffer 
method shown in Fig. 3b are the addition of an ‘old value- field in the 
histoT buffer and a “destinauon register” field in the result shift regis- 
ter. The result shih register now lcoks like the one shown in Fig. 2. 
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Figure 5. (a) Hlsiory Buffer Orgamzauon. (b) History Buffer and 
assoctaied Rest111 Shifi Register. 

When an cxccpnon condition arrives at the head of the buffer, the 
buffer is held. instructton issue is immediately halted. and there is a 
wait unnl pipchnc acnvny completes. The active buffer entrtes are Ihen 
emptied from tad 10 head. and the history values are loaded back into 
their original regtsrers. The program counter value found in the head 
of the history buffer is the precise program counter. 

To make mam memory precise. when a slore entry emerges from 
the buffer. I! sends a signal that another slow can be cornmined to 

memory. Stores can either wait in the issue regtster or can be blocked 
in the memory ptpciine. as in Ihe previous methods. 

The extra hardware rqulred hy lhls melhod is in rhe form of a 
large buffer 10 contain the histon Information. Also the regisrer file 
must have three read ports since the destination value as well ar the 
source operai&% be rwd ar issue omc. There is a slight problem 
if the basic implementanon has a hIpass of the rcsuh bus around the 
rcgtster file. In such a case. the by% must also hc connrc!ed into the 
history buffer. 

6. Future File 

The future file method (Fig. 6) IS similar IO the hlsrory buffer 
method. however iI uses twvrare reelster fi&. One reglsler file 
reflects rhc SIM of rhc archnectural (sequcntlal) machine. This file 
will be referred 10 as the orc/rrccrrurul .fi/c. A sccbnd register file is 

updated ar soon ar mstruCnons finish and therefore runs ahead of the 
archilecfural tile (i.e. II reflects the future with respect IO rhe archhec- 
iural file). This /u~lrrc file IS Ihe worktnf tile used for computanon h: 
the funcrlonal unns. 

RESULT BUS FROM NNCTIONAL UNITS 

I 
4 
0 I 

Figure 6. Future File Organizanon. 

Instructions are issued and results are returned 10 Ihe furure file 
m my order. just as in Ihe origmal pipeline model. There IS also a 
reorder buffer [hat receives results al the same time rhey are written 
into the future file. When the head pointer finds a completed insouc- 
non (a valid envy). the result assoctaled with that entr); is wrinen in the 
architectural file. 

Example 6 

If we consider the code in Example 1 again, there is a period of 
time when the archnccmre file and the future lile contam differem 
entries. \Vi!h thts method, an mstrucnon may finish out of order. so 
when the Integer add finishes, the future tile concams the new contents 
of RO. The archnecture file however does not. and the new contents of 
RO are buffered in the reorder buffer enw correspandmg IO the integer 
add. Between the time the mteper add finishes and the nme the floating 
poinl add finishes. the nro files are different. Once the floating point 
finishes and IU results are wrmen into R4 of both tiles. RO of the archi- 
tecture file is written. 

JUSI as with the pure reorder buffer method, program counter 
values are urmen into Ihe reorder buffer ac issue ame. When the 
instruction at Ihe head of rhe reorder buffer has completed without 
error, iIs resuh is placed in the architecrural file. If it completed with 
an error. the register designators assoclatcd with the buffer entries 
brtween the head and tail pointers are used to restore values in the 

future file from Ihe archilcctural file.’ 

The primarv advantage of rhe furure file method is realized when 
the architecture implements mterruprs via an “exchange” where all the 
registers arc aulomaucallv saved in memorv and new ones are restored 
(as IS done m CDC and Gray archurclures). In this case. Ihe archttcc- 
tural file can be slored awav Immcdlatelv: no resrormg IS necessary as 
in hIstory buffer method. There IS also no .bypass problem as with Ihe 
histor! buffer method. 
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7. Performance Evaluation 

To evaluate the effecuveness of our precise tnlerrup: schemes, we 
use a CRAY-I S srmulatton system developed at the Universny of 
H’rsconstn [PaSmS.?]. This trace-driven simulator IS extremely accu- 
rate. due to :hr hIphi! dclcrmintstic nature of the CRAY-IS. and 8ivcs 
thr nmhcr of clock per&s requucd to execute a program. 

The scalar pornoh of the CRAY-IS 1s ver! similar to the model 
archnccturr dcscrihed in SKIIO~ 2. I. Thus. castmp the haslc 
approaches IWO the Cf+Y’-IS scalar archnecmrc 15 straightforward. 

For a sunulauon workload. the first fourleen Lawrence Liver- 
more loops [McMa72] were used. Because we are primaril! 
mterested in pipelined implemcnrarions of convennonal scalar architec- 
tures. the loops were compiled hv the Crav FORTRAS compiler with 
the vectorizer turned off. 

In the precedmg SCCIIO~S. five merhods were described that could 
be used for puarantrc#ng prectsc interrupts. To c~lua~e the efiect of 
these method< on system performance. the methods were partitioned 
mo three groups. The first and second group respectively comain the 
in-order mrthod and the simple reorder buffer method. The third 
group is composed of the reorder buffer with hvpasses. the history 
buffer. and the future file. This partiuoning was performed because 
the methods tn IIIC thud group result in identtcal svstcm performance. 
This is becausr :he fururc filr har a reorder buffer embedded as part of 
ns implementanon. And the htstory buffer lenph constrams perfor- 
mance in the same uav as a reorder buffer: when the huffer fills. issue 
must slop. All the simulalron results arc reported as for the reorder 
buffer with bypasses. They apply equally well for the history buffer 
and future file methods. The selection of a particular method depends 
not only on its effect on system performance but also the cost of implc- 
mentation and the ease with which the precise CPU SUIC can ‘be 
restored. 

For each precise interrupt method. two methods were described 
for handling stores. Simulations were run for each of these methods. 
For those methods other than the in-order compleuon method. the size 
of the reorder buffer is a parameter. Siring the buffer with too fm 
entries degrades performance since instructions that might issue could 
block at the issue register. The blockage occurs because there is no 
room for a new entry in the buffer. 

Table 1 shows the relattve performance of the In-order. Reorder 
Buffer, and Reorder Buffer with bypass metbods when the stores are 
held until the resul: shift register is empty. The results in the table 
indicate the rcla:ive performance of these methods with respect to the 
CRAY-IS across the first 14 Lawrence Livermore Loops: real CITY- 
IS performance is 1.0. A relauve performance greater than 1.0 indi- 
cates a degradation tn performance. The number of entries in the 
reorder buffer was varied from 3 IO 10. 

Table I. Relari\,e Performance for the first 14 Laurence Livermore 
LOOPS, with stores blocked until the results pipeline 1s cmpb, 

I Number of 
Entries In-order Reorder RwlBP 

I .2322 1.3315 1 xl69 

1.2322 1.2183 1.1743 

1.2322 1.1954 1.1439 

1.2322 1.1808 1.1208 

1.2322 1.1808 1.1208 

The simulatton results for the In-order column are c~nsfant suxc 
:his method does no: depend on a bufler that reorders mstrucnons. For 
all the methods, there IS some performance degradanon. Initially. 
when the reorder buffer is small, the In-order method produces the 
)easl performance degradatton. A small reorder buffer (less than 3 
entries) limits the number of instructrons that can simultaneously be in 
some stage of execution. Once the reorder buffer size 1s mcreased 
beyond 3 entries. either of the other methods results in better perform 
mancc. As expected, the reorder huffcr ui:h bypasses offers superior 
performance when compared with the stmplc reorder buffer. When the 
stze of the buffer was increased bevond 10 entrres, simulation results 
indicated no further performance improvements. (Simulanons were 
also run for buffer stxes of 15. 16. 20. 25. and 60.) At best. one can 
expect a 12% performance degradation when using a reorder buffer 
with bypasses and the first method for handling stores. 

fable 2 indtcates the relauve performance when stores issue and 
wait at the same memory pipebne stage as for memory banh conflicts in 
the ortpinal CRAY-IS. After issuing. stores wait for their counterparl 
dummy store to signal that all prevtously issued re8isrer insnuctions 
have finished. Subsequent loads and stores arc blocked from issuing. 

Table 2. Rrla~~\r Pcrlormancr lor the firs: I4 Lau!encr Lnrrmorr 
Loops. \r11l1 storr\ held m the memor) ptpchnc after MW 

4 1.1560 1.1724 1.1152 

5 1.1560 1.1348 1.0539 

8 1.1560 1.1167 1.0279 

10 1.1560 1.1167 1.0279 

As in Table 1. the In-order results are constant across all entries. 
For the simple reorder buffer, the buffer must have at least 5 entries 
before it results in better performance than the In-order method. The 
reorder buffer with bypasses, however. requires only 4 entries before it 
IS performme more effecrivcly than the In-order method. Just as in 
Table 1. havmg more than 8 cntrtcs in the reorder buffer does not 
result in improved performance. Comparing Table 1 to Table 2. the 
second method for handline stores offers a clear tmprovemcnt over the 
first method. If the second method is used with an 8 entry reorder 
buffer that has bypasses. a performance degradatton of only 3% is 
experienced. 

Clearly there is a trade-off between performance degradation and 
the COSI of implementmg a method. For essentially no cost. the ln- 
order method can be combined with the first method of handling stores. 
Selectin this ‘cheap’ approach results in a 23% performance dcgrada- 
tion. If this degradation is too great, either the second store method 
must be used with the In-order method or one of the more complex 
methods must be used. If the reorder buffer method IS used, one musl 
use a buffer with at least 3 or 4 entries, 

8. Extensions 

In previous sections. we described methods that could be used to 
guarantee precise ntterrupts with respect IO the registers, rhe main 
memory, and the program counter of our simple architectural model. 
In the following secttons. we extend the previous methods IO handle 
addinonal stale information. virtual memory. a cache, and linear pipe- 
lines. Effectrvely . some of these machine features can be considered IO 
be functional unns with non-deterministic cxecuuon nmes. 
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8.1. Handling Other State Values 

Mart architectures have more stale informauon than we have 
assumed in the model architecture. For example. a process may have 
stale regtsters that point to page and segment tables. indicate Interrupt 
mask condittons. CIC. This additional stale informatton can bc precisely 
maintained wtth a method similar to that used for store5 to memory. If 
using a reorder buffer. an instrucuon that changes a stale register 
reserves a reorder hulTer encry and proceeds to the part of the machine 
where the state change will be made. The instruction then wait5 there 
until reccivtng a signal to continue from the rwrder buffer. When its 
entry arrives at the head of the buffer and is removed, then a stgnal is 
sent to cau5e the slate change. 

In architectures that use condttion codes. the condition codes are 
state informauon. Although the problem condition codes present to 
conditional branches is not totally unrelated to the topic here. soluttons 
to the branch problem are not the primary topic of this paper. It is 
assumed that the conditional branch problem has been solved in 5ome 
way. e.g. lAnde67J. If a reorder buffer is being used. condition codes 
can be placed in the reorder buffer. That is. just as for data. the 
reorder buffer is made suflicientlv wide to hold thr condition codes. 
The condition code entry is then updated when the condttton codes 
associated with the erecunon of an tnstructton are computed. Just as 
with data in the reorder buffer. a condition code entp is not used to 
change processor state until all previous tnstructtons have completed 
without error (however condition codes can be bypassed to the tnrtruc- 
tion fetch unit to speed up conditional branches). 

Extension of the history buffer and future file methods to handle 
condition codes is very similar to that of ~he reorder buffer. For the 
history buffer. the condition code senings at the time of instruction 
issue mu51 be saved in the history buffer. The saved condition code5 
can then be used to restore the processor state when an exception is 
depcted. Since the future file method uses a reorder buffer. the above 
dirussion tndicates how condition codes may be 5aved. 

8.2, Virtual Memory 

Vinual memory is a very importattt reason for supporting precise 
interrupts: it must be possible to recover from page faults. First, the 
address translation pipehoe should be designed so that all the load/store 
inmruaions pass through it in order. This has been assumed 
throughout this paper. Depending on the method being used, the 
load/s~ore inmuctions re5ervc time slots in the result pipeline and/or 
re-order buffer that are read no earlier than the time at which the 
insauctions have been checked for excepuon condition5 (especially page 
faults). For nom, these entries are not used for data; just for exception 
reporting and/or holding a program counter value. 

If Utere is an addressing fault, then the instruction is cancelled in 
the addresstng pipeline. and all subsequent load/store instructions are 
uneclled as they pass through che addressing pipeline. This guaran- 
ka that no additional load5 or stores modify the process sum. The 
mechanisms described in the earlier se*ions for assuring preciseness 
with respect to registers guarantee that non-load/%orc instructions fol- 
lowing the faulting load/store will not modify the process state: hence 
the interrupt is precise. 

For example. if the reorder buffer method is being used, a page 
fault would he sent to the reorder buffer when II IS detected. The tag 
assigned IO the corresponding load/store mstrucuon guides it IO the 
correct reorder buffer entry. The reorder buffer entry IS removed from 
the buffer when it reaches the head. The exception condition in the 
entry cau5es all further entrtes of the reorder buffer IO be discarded so 
that the process state is modified no further tnc more regtsters are writ- 
ten). The program counter found tn the reorder buffer entry is precise 
with respect to the fault. 

8.3. Cachc.Mcmor? 

Thus far ue have assumed systems that do not use a cache 
memory. lncluston of a cache tn the memorv htcrarch! affects the 
tmplementanon of prectse tnterrupts. As we have seen. an unportant 

Pan Of all the methods is that stores arc held until all prevtous tnsIruc. 
tions are known to be exccpuon-free. Wirh a cache, stores mav br 
made inlo the cache earlier. and for performance reasons should b,., 
The actual updating of main memory, however. IS still subjut to tnc 
same constratnt5 as before. 

83.1. Store-through Caches 

With a store-through cache. the cache can bc updated tmmedi- 
ately. while the store-through to main memory IS handled as in prevl- 
ous sections. That is. all prevtous instructions musi lirst be known to 
be exception-free. Load instructtons are free IO use the cached copy, 
however. regardless of whether the store-through has taken place. This 
means that main memo? is always in a prectse stale. but the cache 
contents may *run ahead” of the precise state. If an tnferrupt should 
occur while the cache is potentially in such a stale. then the cache 
should bc flushed. This guarantees that prematurely updated cache. 
locations will not be used. However, this can lead to performance 
problems. especially for larger caches. 

Another alternative is to treat the cache in a way similar to the 
register files. One could. for example. keep a history buffer for the 
cache. Just as with registers, a cache location would have to be read 
just prior IO writing it with a new value. This does not necessarily 
mew a performance penalty because the cache must be checked for a 
hit prior to the write cycle. In many high performance cache organiza- 
tions. the read cycle for the history data could be done in parallel with 
the hit check. Each store instruction make5 a buffer entv indicatmg 
the cache location it has wrtnen. The buffer entries can be used IO 
restore the state of the cache. 4s instrucuons’complcte without excep 
tiotts. the buffer entries are discarded. The future file can be extended 
in a timilar way. 

8.3.2. Write-Back Cache 

A write-back cache is perhaps the ca:he type most compatible 
with implementing precise interrupts. This is kouse stores in a 
write-back cache are not made directly to memory: there is a built-in 
delay between updating the cache and updating main memory. Before 
an actual write-back operation can be performed. however. the reorder 
buffer should be entptied or should be checked for data @longing to the 
line being written back. IF such data should be found. the write-back 
must wait until the data has made its way into the cache. If a history 
buffer is used, either a cache line must be saved in the history buffer. 
or the write-back must watt until the associated insrruction has made its 
way to the end of the buffer. Notice that tn any case. the write-back 
will sometimes have IO wait until a prectse state is reached. 

8.4. Linear Pipeline Structure5 

An aiternattvr to the parallel funcrtonal untl organizations wr 
have been dtscusstnp IS a linear ptpcitne organrzatton. Refer to Fig. 7. 

A A A A A I 

- . . . 4 . . . - 

OPERAND FiZTCH EXECUTION 

Figure 7. Example of a linear ptpeline tmplementatton. 
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Linear pipelmcs provide a more natural implementation of register- 
storage archnecrures ltke the IBM 370. Here, the same tnstructton can 
access a mcmorv operand and perform some functton on il. Hen=. 
these in-mar ptpeltner have an instruction ferchldeccdc phase. an 
operand fefch phase. and an execution phase. any of which may be 
composed of one or several pipelme stager. 

In general. reordering rnstrucftons after execuuon IS not as signi- 
ficanr an issue in such organrutions bemuse tt is natural for instruc- 
uons IO stay tn order as they pass through the pipe. Even if fhey finish 
earl! tn the ptpc. they proceed to the end where excepttons are checked 
before modtfytne the process state. Hence, the pipeitne itself acts as a 
son of reorder buffer. 

The role of the result shift register is played by the control infor- 
mation that flour down fhc p:pitne alongside the data path. Program 
counter values for preciseness may also Ilou down the pipeline so that 
they are available should an exceptton arire. 

Linear pqehnes often have several bypass paths connecting ittter- 
mediate pipltne stages. A complete set of bypasses is typically not 
used. rather there IS some critical subset selected IO maximize perfor- 
mance while keeptng conrrol complcxtv manageable. Hence. using the 
tcrmntolog! of thts paper. ltnear pipeitnes achtevc prectse tnterruptr by 
ustng a reorder buffer method utth bypasses. 

9. Summary and Conclusion5 

Five methods have been described that solve the precise interrupt 
problem. These methods were then evaluated fhrough simulations of a 
CRAY-IS implemented with these methods. These simulation results 
indicate thaf, depending on the method and the way stores are handled, 
the performance degradation can range from berueen 25% IO 3%. It is 
expected that the COSI of implementing these methods could vary sub- 
stantially. with the method producing the smallest performance degra- 
dation probably being the most expensive. Thus. selection of a par&u- 
Iar method will depnd not only on the performance degradation, but 
whether the :mpicmen:or is willing IO pay for that method. 

1: i5 important to note that 5ome indirect cause5 for performance 
degradation were not con5idered. Thae include longer control pnIhs 
that would tend IO lengthen the clock period. Alro. additional logic for 
supporting precise interrupts implies greater board area which implies 
more wiring delay5 which could alro lengthen the clock period. 
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