

Increasing Processor Performance by Implementing Deeper Pipelines

Eric Sprangle, Doug Carmean

Pentium® Processor Architecture Group, Intel Corporation
eric.sprangle@intel.com, douglas.m.carmean@intel.com

Abstract

One architectural method for increasing processor
performance involves increasing the frequency by
implementing deeper pipelines. This paper will explore
the relationship between performance and pipeline depth
using a Pentium® 4 processor like architecture as a
baseline and will show that deeper pipelines can continue
to increase performance.

This paper will show that the branch misprediction
latency is the single largest contributor to performance
degradation as pipelines are stretched, and therefore
branch prediction and fast branch recovery will continue
to increase in importance. We will also show that higher
performance cores, implemented with longer pipelines for
example, will put more pressure on the memory system,
and therefore require larger on-chip caches. Finally, we
will show that in the same process technology, designing
deeper pipelines can increase the processor frequency by
100%, which, when combined with larger on-chip caches
can yield performance improvements of 35% to 90% over
a Pentium® 4 like processor.

1. Introduction

Determining the target frequency of the processor is
one of the fundamental decisions facing a microprocessor
architect. While historical debate of pushing frequency or
IPC to improve performance continues, many argue that
modern processors have pushed pipelines beyond their
optimal depth. With the fundamental debate raging, most
agree that the engineering complexity and effort increases
substantially with deeper pipelines. Focusing on single
stream performance, and using the Pentium® 4 processor
as a baseline architecture, this paper will conclude that
pipelines can be further lengthened beyond the Pentium®
4 processor’s 20 stages to improve performance. We
assert that architectural advances will enable even deeper
pipelines, although engineering effort and other
considerations may be the real limiter.

2. Overview

We will propose a model to predict performance as a
function of pipeline depth and cache size. First, we will
determine the sensitivity of IPC to the depth of important

pipelines. Then, we will describe how a cycle can be
thought of as the sum of “useful time” and “overhead
time”, and that the frequency can be increased by
reducing the amount of “useful time” per cycle. We will
then show that deeper pipelines can increase the
frequency to more than offset the decrease in IPC. We
will then describe how execution time can be thought of
as the sum of “core time” and “memory time” and show
how “memory time” can be reduced with larger caches.
Finally, we will show how the combination of deeper
pipelines and larger caches can increase performance
significantly.

3. Fundamental processor loops

Performance can monotonically increase with increased
pipeline depth as long as the latency associated with the
pipeline is not exposed systematically. Unfortunately,
due to the unpredictable nature of code and data streams,
the pipeline cannot always be filled correctly and the
flushing of the pipeline exposes the latency. These
flushes are inevitable, and pipeline exposures decrease
IPC as the pipeline depth increases. For example, a
branch misprediction exposes the branch misprediction
pipeline, and the exposure penalty increases as the
pipeline depth increases. The L1 cache pipeline can also
be exposed if there are not enough independent memory
operations sent to the L1 cache to saturate the pipeline.
Of course, some pipeline latencies are more important
than others. We simulated the performance sensitivities
to the various loops on a Pentium® 4 processor like
architecture to understand which loops are the most
performance sensitive.

4. Simulation methodology

We conducted our experiments using an execution
driven simulator called “Skeleton”, which is a high level
simulator that is typically used for coarse level
architectural trade-off analysis. The simulator is layered
on top of a uOp-level, IA32 architectural simulator that
executes “Long Instruction Trace (LIT)”s. A LIT is not,
as the name implies, a trace, rather it is a snapshot of
processor architectural state that includes the state of
system memory. Included in the LIT is a list of “LIT
injections” which are system interrupts that are needed to

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

simulate system events such as DMA traffic. Since the
LIT includes an entire snapshot of memory, this
methodology can execute both user and kernel
instructions, as well as wrong path effects. Our
simulation methodology uses carefully chosen, 30 million
instruction program snippets to model the characteristics
of the overall application.

Our simulations are based on a Pentium® 4 like
processor described in Table 1. The results will be
limited to the suites listed in Table 2 for a total of 91
benchmarks that are comprised of 465 LITs.

Table 1: Simulated 2GHz Pentium® 4 like
processor configuration.

Core
 3-wide fetch/retire
 2 ALUs (running at 2x frequency)
 1 load and store / cycle
 In-order allocation/de-allocation of buffers
 512 rob entries, load buffers and store buffers
Memory System
 64 kB/8-way I-cache
 8 kB/4-way L1 D-cache, 2 cycle latency
 256 kB/8-way unified L2 cache, 12 cycle latency
 3.2 GB/sec memory system, 165ns average latency
 Perfect memory disambiguation
 16 kB Gshare branch predictor
 Streaming based hardware prefetcher

Table 2: Simulated Benchmark Suites

Suite Number of
Benchmarks Description

SPECint95 8 spec.org

Multimedia 22
speech recognition,
mpeg, photoshop,

ray tracing, rsa

Productivity 13

sysmark2k
internet/business/

productivity,
Premiere

SPECfp2k 10 spec.org
SPECint2k 12 spec.org
Workstation 14 CAD, rendering

Internet 12 webmark2k, specjbb

5. Efficiency vs. pipeline depth

Figure 1 shows the relative IPC as the branch
misprediction penalty is increased from 20 to 30 cycles.
We can determine the average branch misprediction
latency sensitivity by calculating the average IPC
degradation when increasing the branch misprediction
latency by one cycle.

It is interesting to note that SPECint95 is much more
sensitive to the branch misprediction latency than the
other application classes. To a lesser extent SPECint2k
also shows greater sensitivity to branch misprediction
latency than the other application classes. In this sense,
SPECint95 in particular is not representative of general
desktop applications because of the higher branch
misprediction rates.

0.88

0.9

0.92

0.94

0.96

0.98

1

20 22 24 26 28 30
Branch Missprediction Latency

N
or

m
al

iz
ed

 IP
C

SPECint95
multimedia
productivity
SPECint2k
workstation
internet
mean

Figure 1: Normalized performance vs. branch
misprediction latency.
To understand the sensitivity to the ALU loop latency,

we started with a baseline processor that implements half
clock cycle add operations, like the implementation in the
Pentium® 4 processor. The Pentium® 4 processor
pipelines the ALU operation into 3 “half” cycles: lower
16 bit ALU, upper 16 bit ALU, flag generation [2].
Figure 2 shows the effect of increasing the ALU latency
from 1 half clock cycle to 3 full clock cycles while
keeping the ALU throughput constant. Hence, for a
workload that consists of independent ALU operations,
we would expect to see no increase or degradation in
performance, but for a stream of dependent ALU
operations, execution time would increase linearly with
the ALU latency.

In Table 3, we show the performance impact of adding
an additional full cycle to a given loop. For example, the
impact of increasing the ALU latency by a full clock
cycle is 4.76%. As Table 3 shows, the ALU loop is, by
far, the most performance sensitive loop on integer
applications.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

Table 3: Average percentage performance
degradation when a loop is lengthened by 1
cycle.

Suite ALU L1
cache

L2
cache Br Miss

SPECint95 5.64 0.72 0.32 1.08
Multimedia 3.84 2.08 0.54 0.40
Productivity 7.00 2.20 0.50 0.48
SPECfp2k 0.76 1.08 0.24 0.26
SPECint2k 4.96 2.56 0.90 0.68
workstation 3.16 2.64 0.82 0.36

internet 3.96 2.00 0.46 0.45
Average 4.76 2.04 0.54 0.45

It is important to note that the performance results are a

strong function of algorithmic assumptions in the
microarchitecture. For example, we would expect L2
cache sensitivity to be a function of the L1 cache size and
branch misprediction latency sensitivity to be a function
of the branch predictor.

We are also making the approximation that these
sensitivities have a constant incremental impact on IPC
for the pipeline length ranges we are interested in. For
example, a path with a 10% sensitivity would drop
performance to 90% on the first cycle and (1-10%)2 or to
81% on the second cycle.

Typically, a larger portion of the engineering effort
allocated to a project is spent on the latency sensitive
paths. The effort is spent developing aggressive
architectural and circuit solutions to these paths, as well
as careful analysis of the specific implementations.
Solutions such as clustering[1] or slicing[2] are typically
employed to limit performance degradation as pipeline
frequency is increased.

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.5 1 1.5 2 2.5 3
ALU Latency in Cycles

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

SPECint2K
productivity_short
workstation_short
internet_short
multimedia_short

Figure 2: Performance vs. ALU latency.

6. Pipeline depth vs. frequency

Consider the branch misprediction pipeline in our
Pentium® 4 like processor. The 20 stage misprediction
pipeline includes the time required for a branch
instruction to be issued, schedule, resolved and send a
signal back to the front end to redirect the instruction
stream.

A 2GHz Pentium® 4 processor has a 500ps cycle time,
with a portion of the cycle used for skew, jitter, latching
and other pipeline overheads. The cycle time that is not
used for pipeline overhead is then dedicated for useful
work. Assuming that the pipeline overhead per cycle is
90 ps, one can calculate the total “algorithmic work”
associated with the branch misprediction pipeline as the
number of stages * useful work/stage, or (20 stages*
(500ps – 90ps) = 8200 ps of algorithmic work in branch
miss loop).

In these calculations, we have included the
communication time in the “useful work” component of
the cycle time. The communication time includes the
latency of wire delays, and therefore the “useful work” in
a path is a function of the floorplan. This is particularly
relevant in areas such as the branch misprediction loop,
where the latency of driving the misprediction signal from
the branch resolution unit to the front end becomes a key
component of the overall loop latency

If we assume that the overhead per cycle is constant in
a given circuit technology, in this case 90 ps, we can
increase the processor frequency by reducing the “useful
time” per cycle. As the useful time per cycle approaches
zero, the total cycle time approaches the “overhead time”.
Because of the constant overhead, the frequency does not
approach infinity but rather 1/90ps or 11.1GHz as shown
in Figure 3. There are many other practical limits that
would be reached before 11GHz, some of which will be
discussed later.

0

2

4

6

8

10

12

01002003004005006007008009001000

ps of useful time per cycle

re
la

tiv
e

m
et

ric

Relative Frequency
Relative Performance 0.23% impact/branch misprediction cycle
Relative Performance 0.45% impact/branch misprediction cycle

Figure 3: Frequency and relative
performance vs. ps of useful time per cycle.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

As we increase the pipeline depth, the staging overhead
of the branch misprediction pipeline increases, which
increases the branch misprediction latency, effectively
lowering the overall IPC. If we assume IPC degrades by
0.45% per additional branch misprediction cycle (the
average branch loop latency sensitivity from Table 3), we
can calculate the overall performance as a function of
“useful time” per cycle, as shown in Figure 3. (note that
we are comprehending the efficiency impact of
increasingly only the branch misprediction latency in this
example).

As expected, the overall performance degrades when
the decrease in IPC outweighs the increase in frequency.
From Figure 3 we see that performance tracks closely
with frequency until the useful time per cycle reaches
about 90 ps, which equates to a cycle time of 180ps. As a
point of comparison, the 180ps cycle time is roughly half
the cycle time of a Pentium® 4 processor. If we assume
that the sensitivity is cut in half, or 0.23% per additional
branch misprediction cycle, we see that the potential
overall performance increase is higher and the optimal
point has a smaller useful time per cycle.

7. Off-chip memory latency

It is important to note that in the proceeding analysis,
the percentage of time waiting for memory was held
constant. This was a simplification that is technically
incorrect, as the percentage of time waiting for memory
increases as the core performance increases. This
assumption does not change the optimal frequency, as
minimizing the core time will minimize the overall
program execution time. Further, we will show that the
percentage of time that is spent waiting for memory can
be reduced by increasing the size of the on-chip L2 cache.
In subsequent discussions, we will show that the cache
miss rate will decrease as the square root of the increase
in L2 cache size.

8. Pipelining overhead

In the Pentium® 4 processor, the clock skew and jitter
overhead is about 51ps [3]. In a conservative ASIC
design, the overhead is the sum of the clock skew and
jitter combined with the latch delay. In a standard 0.18um
process, a typical flop equates to about 3 FO4 delays, with
the FO4 delay being about 25ps [5]. Therefore in a
0.18um process, pipeline overhead would come out to
about 75ps + 51ps = 125ps. In a custom design flow,
most of the clock skew and jitter overhead can be hidden
by using time borrowing circuit techniques. Time
borrowing uses soft clock edges to reduce or eliminate the
impact of clock skew and jitter [4] which would yield a
75ps pipeline overhead. In an extreme custom design
style, the flop overhead could be reduced by using

techniques like pulsed clocks and/or direct domino
pipelines, yielding a sub-50ps pipelining overhead at the
cost of a much larger design effort.

At the extreme edge of pipelining, here defined as a
cycle time of less than 300ps in a 0.18um process, the
design effort increases rapidly because of the
minimum/maximum delay design windows that arises as
the pipeline cycle is reduced. The minimum delay must
always be larger than the sum of clock skew and jitter +
latch hold time. If this constraint is not honored, then the
output of combinational logic may be lost, through
transitions, before it can be latched [4].

We will assume that most pipeline interfaces can be at
least partially time borrowed and therefore use an average
overhead of 90ps per cycle, which is the nominal
overhead assumed on Pentium® 4 processor[5].

Note that, in the past, the global skew has been kept
under control through better circuit techniques. For
example, the Pentium® Pro processor global skew was
250ps [6] with an initial cycle time of 8000ps (3.1% cycle
time) and the Pentium® 4 processor used a global skew
of 20ps [3] with an initial cycle time of 667ps (3.0% of
cycle time). However, this paper will assume overhead
does not scale with frequency, and we will use 90ps as a
baseline overhead time

9. The limits of pipelining

Implicit in our pipeline scaling analysis is that the
pipeline depth can be arbitrarily increased. While this
assumption is generally true, the complexity associated
with increasing pipelines increases rapidly in some of the
fundamental loops. Some of the pipelines in a processor
include “loops” where a stage requires the result of the
previous stage for execution. In these loops that require
value bypassing between stages, any latency increase will
directly reduce the processor’s overall IPC. As we have
shown, some of the loops are more critical than others
(especially the ALU loop, L1 cache latency loop and
branch misprediction loop). We will look at a case study
to better understand the fundamental limits of pipelining.

9.1. Pipelining the RAT

The Pentium® 4 processor register renaming algorithm
is similar to those implemented in other out-of-order
processors, such as the Alpha 21264 [1]. The register
renaming algorithm involves several steps where
architectural registers are mapped to physical registers.
The first step requires that the destination register in a
given uOP is mapped to a physical register. Then, a
mapping process renames all the register sources in the
uop to the physical registers assigned to the previous uop
that generated this particular register instance. A
“Register Alias Table” (RAT) holds the mapping from

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

architectural to physical register. Algorithmically, a uop
reads the RAT to determine the physical register for each
of its architectural source registers and then writes the
RAT to record the physical location of its architectural
destination. The next uop (in program order) reads and
writes the RAT and so on. In this scheme, it is possible
for a uop source to match the destination of the previous
uop.

If we stretch the pipeline so that an update to a RAT
entry followed by a read to the same entry takes 2 cycles,
then a level of bypassing is needed to cover the write to
read latency as seen in Figure 4, 2 stage pipeline. The
multiplexer that is used to implement the bypassing
increases the amount of useful work to cover the
additional latency. If the pipeline is further stretched to 3
cycles, then an additional bypass stage is needed (Figure
4, 3 stage pipeline), but because the bypass is done in
parallel with the RAT, the amount of useful work in the
critical path does not increase. As we increase the depth
of the pipeline in the RAT, the amount of useful work
increases when going from 1 to 2 cycles, and then
remains constant thereafter. This is because once we
include a final bypass mux, we do not need to add
additional bypass muxes in the rename path as the
pipeline depth is increased.

What is the limit of pipelining for the RAT? Eventually
the number of muxes needed to cover the write to read
latency in the RAT causes the delay through the muxes to
be larger than the delay through the RAT (Figure 4, 4
stage pipeline). When this happens, the amount of useful
work as we go through the path is increased again. At
this point we can continue to increase the depth of the
pipeline, but at the expense of increased latency

Figure 4: Pipelining the RAT

As we continue to increase the depth of the global

pipeline, the next interesting challenge is posed by the
register file. When the depth of the register file pipeline
increases to the point where individual components of the
array access need to be pipelined, it becomes convenient
to add a latch immediately after the bit-line sense
amplifiers. However, adding a latch in the word-line
access or within the bit-line drive becomes very
problematic. Rather than attempting to add a latch within
a word or bit line, the preferred method is to partition the
structure into one or more pieces. Our analysis implicitly

assumes we can overcome this problem through
partitioning, or some other means, and that all of the
pipelines that are scaled do not add useful work to the
critical path.

9.2. Pipelining wires

There are plenty of places in the Pentium® 4 processor
architecture where the wires were pipelined [9]. While it
is straightforward to calculate the percentage of the
processor that can be reached in a cycle, it is relatively
uninteresting, as there is an existence proof that pipelining
wires is an effective mechanism to overcome intrinsic
wire latency.

10. Overall performance vs. pipeline depth

We can estimate overall performance vs. pipeline depth
when using the same fundamental algorithms
implemented in the Pentium® 4 processor architecture.
We will assume we can pipeline the next fetch address
generation loop (through architectural techniques, for
example [7][8]) and the renaming loop without increasing
the latency for back to back operations. However, the
L1/L2 cache access time as well as the branch
misprediction latency will increase. We will also assume
that the ALUs in Pentium® 4 processor are running at the
minimum possible latency, and that higher frequency
designs will require additional latencies.

Based on these assumptions, we can build a model to
estimate performance vs. pipeline depth. We will quote
the branch missprediction pipeline depth, but we will
scale all 4 of the critical loops. For example, we can
calculate the frequency of a processor with a 50 stage
branch misprediction loop by dividing the total useful
time in the loop (assuming 90ps overhead per stage) as 20
stages * (500 ps – 90ps) = 8200ps. Dividing the total
algorithmic time of 8200ps by 50 stages implies 164 ps
useful time per stage. Adding back the 90ps overhead
gives us a cycle time of 254ps for a frequency increase of
96%.

We can calculate the L1 cache latency in cycles by first
calculating the algorithmic work as 2 stages * (500 ps –
90ps) = 820ps. Dividing this algorithmic work by the
new “useful time” per cycle gives 820ps/164ps per stage
or 5 stages. We can calculate the IPC impact of these
loops by calculating all of the new loop latencies in cycles
and calculating the degradation in IPC due to the increase
of these individual loops. Taking the product of the
individual components of IPC degradations gives the
overall IPC degradation. Multiplying the new frequency
by the new IPC gives the final performance curve vs
pipeline depth as shown in Figure 5.

RAT Rat RAT Rat

1 stage 2 stages 3 stages 4 stages

A B B C

RATRAT

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

0.0

0.5

1.0

1.5

2.0

2.5

3.0

20 30 40 50 60 70 80 90 100

Branch Miss Pipeline Depth

R
el

at
iv

e
M

et
ric

Frequency
Performance
IPC

Figure 5: Frequency/IPC/Performance vs.
branch misprediction pipeline depth.

Figure 5 shows that performance continues to increase
as the pipeline is stretched up until the frequency is about
doubled, which occurs when the branch misprediction
pipeline reaches about 52 stages. The dips in the IPC and
overall performance curves are due to the non-smooth
nature of increasing pipeline depth – our analysis assumes
that you can’t add less then a full cycle to a pipeline.

Table 4 shows the individual loop lengths for a
processor running at twice the frequency. Given these
lengths, we can also calculate the individual IPC
degradations due to each of the 4 loops, as well as the
overall IPC degradation multiplier, as shown in Table 4.
The relative IPC for each loop is calculated as (1-
sensitivity)increase in cycles. The overall relative IPC is the
product of the individual relative IPCs.

Even though the branch misprediction pipeline has the
least per clock performance sensitivity, the absolute
length of the branch misprediction pipeline makes it the
loop with the single largest contribution to IPC loss. In a
“from scratch” processor design, there is flexibility to
change the fundamental algorithms that influence IPC.
For example, there is opportunity to reduce IPC
degradation by reducing the impact of branch misses
through improved branch prediction.

Table 4: Pipeline lengths for a hypothetical
Pentium® 4 like processor that runs at twice
the frequency.

Loop

Pipeline
Length

2x Freq
Length

Sensitivity/
cycle

Relative
IPC

ALU 0.5 1 4.76% 98%
L1

cache 2 4.5 2.04% 95%

L2
cache 12 32 0.54% 90%

Br
Miss 20 52 0.45% 87%

Overall 72%

To validate the assumptions that the overall IPC
degradation can be computed as the product of the
individual degradations, we performed simulations at
multiple effective frequencies, using the same
methodology outlined above to generate the pipeline
lengths.

Figure 6 shows the performance vs. pipeline depth as
predicted by the analytical model and those produced by
the performance simulator. As the data in the following
chart shows, the simulated results align very closely with
those produced by the analytical model for the pipeline
depths of interest.

1.0

1.1

1.2

1.3

1.4

1.5

20 30 40 50 60 70 80 90 100

Branch Miss Pipeline Depth

R
el

at
iv

e
Pe

rf
or

m
an

ce

Modelled
Simulated

Figure 6: Simulated vs. modeled
performance vs. branch misprediction
pipeline depth.

11. Decreasing the impact of branch misses

There are many architectural and implementation
methods for decreasing the branch misprediction penalty.
Obviously, a more accurate branch predictor would
decrease the IPC impact of additional cycles by reducing
the number of times the branch misprediction loop is
exposed. Alternatively, by implementing different
architectural algorithms, a design can reduce the amount
of useful work in the loop. For example, by more
aggressively pre-decoding of instructions, perhaps by
implementing a trace cache, a design can employ simpler,
lower latency decoders, which reduces the algorithmic
work in the branch misprediction loop.

In addition to reducing the algorithmic work, methods
could try to reduce the “useless time” in the branch
misprediction loop. For example, by implementing the
front end to be twice as wide, and run at half the
frequency, the amount of clock skew and jitter and latch
delay associated with the loop is reduced while keeping
the bandwidth the same (assuming the instruction fetch
units that are twice as wide can really produce twice the
number of uops per cycle). Another method that could
reduce clock skew and jitter overhead involves using
multiple clocks with smaller clock skew and jitter

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

overheads within a clock domain, and larger overhead
between clock domains.

Finally, designers can tune the speedpaths detected on
silicon (by resizing transistors, and rearranging floorplans
etc) which might exist because of the difficulties
associated with identifying the speed paths pre-silicon.
Determining speed paths beyond a given accuracy
increases quickly because of complex interactions that
determine speed path latencies. These interactions
include in-die process variation, interconnect coupling,
and the false path elimination problem (many of the speed
paths that a tool may detect are “don’t care” scenarios).

In our analytical model, we can estimate the upper
bound potential of removing the branch misprediction
penalty by eliminating the IPC degradation due to the
longer branch misprediction penalty. Figure 7 shows the
scaling benefits if the branch misprediction penalty could
be completely removed, raising the performance increase
potential from 45% to 90%. Deeper pipelines will
increase the opportunity for new architectural techniques
to improve performance.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

20 30 40 50 60 70 80 90 100

Branch Miss Pipeline Depth

R
el

at
iv

e
M

et
ric

Frequency
No Branch Miss Latency Efficiency Impact
Performance with Branch Miss Latency Impact

Figure 7: Freq/efficiency/performance vs.
branch misprediction pipeline depth

Another way of improving the scaling of pipelines is to
reduce the overhead due to pipelining (latch, clock skew,
jitter, etc) through improvements in circuits and design
methodologies. Moving from the 90ps overhead to a 50ps
overhead, which is potentially achievable in an extreme
custom design, the model predicts that the potential
speedup improvement increases from about 45% to 65%,
and as expected the optimal pipeline depth increases as
the pipeline overhead is reduced, as shown in Figure 8.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

20 30 40 50 60 70 80 90 100

Branch Miss Pipeline Depth

R
el

at
iv

e
Pe

rf
or

m
an

ce

50 ps overhead
60 ps overhead
70 ps overhead
80 ps overhead
90 ps overhead

Figure 8: Performance vs. pipeline depth vs.
pipeline overhead

12. Percentage time waiting for main memory

Program execution time can be broken into the “core
time” (which scales with processor frequency) and “off-
chip time” which is associated with off chip memory
latencies. As we explained, our previous calculations
have assumed that the percentage of time waiting for
memory remains constant as the core performance is
improved, which is wrong.

We can calculate the “core time” by running an
application on two systems that differ only in processor
frequency. We can get the performance of SPECint2k on
multiple Pentium® 4 processors run between 1.5Ghz and
2GHz (we need to make sure the compiler does not
change when quoting these numbers).

Figure 9 compares SPECint2k base (run on the Intel
D850GB motherboard) for the Pentium® 4 processor vs.
perfect scaling and shows that the Pentium® 4 processor
converts about 65% of frequency increase into
performance improvement. This degradation should be
about the same for similar modern CPUs that use 256kB
caches and have about the same performance (a quick
analysis SPEC reported scores will confirm this).
Therefore we can conclude that SPECint2k spends about
35% of its time waiting for main memory. This is
important because it indicates the upper bound speedup
achievable is 1/0.35 or 2.85x assuming we don’t reduce
the “off-chip time” (for example by improving the
prefetching algorithms or increasing the size of the L2
cache).

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

500

525

550

575

600

625

650

675

700

725

1.5 1.6 1.7 1.8 1.9 2

Frequency GHz

SP
EC

in
t2

K
Perfect Linear Scaling
SPEC Reported Values

Figure 9: SPECint2K vs. frequency

We can calculate the percentage of time waiting for
memory for each of our benchmark suites by varying the
frequency of the simulated processor plus and minus 200
MHz, and running the LITs. Table 5 shows the
percentage of time spent in core on the various
benchmark suites on our base processor configuration.
Notice that the percentage of core time generated by the
simulator for SPECint2k matches closely the values
reported to SPEC (65% calculated from SPEC numbers
vs. 67% for the simulated results) which gives some
confidence that the simulator is reasonably modeling the
off chip memory system (bandwidth, latencies and
prefetcher algorithms).

Table 5: Percentage of time spent in core
calculated by simulating at 2 different
frequencies.

Suite % of core time
SPECint95 79
SPECint2k 67
Productivity 79
Workstation 76

Internet 70
Multimedia 74
SPECfp95 66
SPECfp2k 66
Average 72

13. Performance vs. cache size

To this point, all of the simulations have used the
Pentium® 4 processor 256kB L2 cache configuration. As
the frequency (performance) of the core is increased, the
percentage of time spent waiting for memory increases.
A common rule of thumb says that quadrupling the cache
size will halve the miss rate of the cache. Figure 10 and

Figure 11 show that this rule of thumb is quite accurate
for cache size ranges from 0.5 kB to 8 MB for SPECint2k
and Sysmark2K. Since 30 million instruction traces
might not be long enough to warm up an 8 MB cache,
these simulations were done using much longer traces.
While it is true that an individual benchmark can fit in a
given cache size, the benchmark suites show that the rule
of thumb holds for the average across all benchmarks in
the suite.

1

10

100

1000

0 1 2 3 4 5 6 7 8 9 10 11 12 13
log2 cache size (KB)

lo
g1

0
m

is
se

s
/ 1

00
0

in
st

ru
ct

io
ns

1 way
2 way
4 way
8 way
16 way
1/2 misses every 4x $ size

Figure 10: L2 cache misses/1000 instructions
(SPECint2k average)

0.1

1

10

100

1000

0 2 4 6 8 10 12 14

log2 cache size (KB)

lo
g1

0
m

is
se

s/
10

00
 in

st
ru

ct
io

ns

1 way
2 way
4 way
8 way
16 way
1/2 misses every 4x $ size

Figure 11: L2 cache misses / 1000
instructions (Sysmark2k average)

14. Increasing pipeline depth and L2 cache

Assuming that the miss rate decreases as 1/(sqrt (cache
size)) as Figure 10 and Figure 11 suggest, then we can
hold the percentage of time waiting for memory constant
if we quadruple the size of the cache every time we
double to core performance. We can apply this rule of
thumb to our pipeline scaling model to estimate the
speedups possible by both increasing pipeline depth and
increasing L2 cache size as shown in Figure 12.

65%

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

Assuming that 72% of the time scales with frequency
with a 256kB cache, (the overall average for our
benchmarks shown in Table 5), we can assume 28% of
the time spent waiting for memory and will scale as
1/sqrt(cache size). The data shows that speedups of about
80% are possible when the pipeline is stretched to double
frequency and L2 cache size is increased from 4MB to
8MB. Notice that the optimal pipeline depth is not a
function of cache size, which makes sense because
minimizing the core time is independent of minimizing
the memory time.

In this analysis, we are not increasing the L2 cache
latency as we increase the size, which is incorrect. Some
portion of the L2 latency is a function of the L2 cache
size.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

20 30 40 50 60 70 80 90 100

Branch Miss Pipeline Depth

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

8 MB
4 MB
2 MB
1 MB
512 KB
256 KB

Figure 12: Performance vs. pipeline depth for
different L2 cache sizes.

The next chart takes the same data and normalizes each
of the cache size configurations so we can extract the
performance improvement due only to the increase in
pipeline depth. The data shows that increasing the
pipeline depth can increase performance between about
30 and 45%, depending on how much of the speedup is
watered down by waiting for the memory system.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

20 30 40 50 60 70 80 90 100

Branch Miss Pipeline Depth

In
di

vi
du

al
ly

 N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

8 MB
4 MB
2 MB
1 MB
512 KB
256 KB

Figure 13: Performance vs. pipeline depth
vs. L2$ size normalized.

15. Difficulties with deeper pipelines

Of course there are many issues associated with deeper
pipelines that are beyond the scope of this paper. For
example, deeper pipelines may imply more complex
algorithms. On the other hand, wider machines may also
imply more complex algorithms, so one might conclude
that higher performance implies more complex
algorithms. Given that we are attempting to build a
higher performance processor, the fair question is “when
is it easier to achieve higher performance through width
vs. deeper pipelines?” The answer to this question may
differ based on which part of the processor is being
analyzed. For example, on the Pentium®4 processor, the
answer in the fetch unit of the processor was presumably
“wider is easier to achieve performance” since the fetch
unit of the processor runs at half of the base frequency
and achieves throughput by increasing width. This also
makes sense in light of the relatively low branch
misprediction latency sensitivity. The front end needs
total bandwidth through whatever means possible and is
less concerned with latency. On the other hand, the high
sensitivity to latency in the execution core motivated
running this piece of the processor at twice the base
frequency.

There are many other problems associated with deeper
pipelines. Deeper pipelines will put more pressure on
accurate timing tools. New algorithms may need to be
developed which will increase the number of interactions
that need to be validated. More accurate architectural
simulators will be needed to model those interactions to
estimate performance and tune the architecture.
Increasing performance through deeper pipelines will also
increase power (although wider machines will also
increase power).

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

16. Pipeline scaling and future process
technologies

To a first order, increasing frequency by stretching the
pipelines and increasing frequency by improving process
are independent. Some components of skew and jitter
will scale with process but some may not. Wires will not
scale as fast as transistors [10], so wire dominated paths
will need to be stretched even further (even an equivalent
architecture, migrated to a future process, will require re-
pipelining).

17. Conclusion and future directions

A simple model was discussed to predict processor
performance as a function of pipeline depth and cache
size. The model was shown to correlate to a simulator,
and the simulator was shown to correlate to submitted
SPEC results. Based on this model, we show that
processor performance can in theory be improved relative
to the Pentium® 4 processor by 35 to 90% by both
increasing pipeline depth and cache size.

This paper argues that pipelines can be further
optimized for performance given current architectural and
circuit understanding. Better architectural algorithms and
circuit techniques will increase the benefit of pipeline
scaling. For example, SMT, which increases parallelism,
should improve pipeline scaling. There are many exciting
engineering challenges associated with deeper pipelines
that will keep architects and designers entertained for
years to come.

18. References

[1] R.E. Kessler. “The alpha 21264 microprocessor.” IEEE
Micro, 19(2):24-36, March/April 1999

[2] D. Sager et al., “A 0.18-um CMOS IA-32 microprocessor
with a 4-GHz integer execution unit.” In ISSCC Dig. Tech.
Papers, February 2001, pp. 324-325

[3] N. Kurd et. al., "A Multigigahertz Clocking Scheme for the
Pentium® 4 Microprocessor," in ISSCC Dig. Tech. Papers,
February 2001, pp. 404-405.

[4] D. Harris, “Skew-Tolerant Circuit Design,” Academic Press

[5] Personal communications with Rajesh Kumar, Pentium
Processor Circuit Group, Intel

[6] R. P. Colwell and R. L. Steck. "A 0.6um BiCMOS processor
with dynamic execution," International Solid State Circuits
Conference (ISSCC) Digest of Technical Papers, pages 176-177,
February 1995.

[7] Andre Seznec, Stephan Jourdan, Pascal Sainrat, and Pierre
Michaud. Multiple-Block Ahead Branch Predictors. In

Proceedings of the 7th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems, pages 116--
127, Cambridge, Massachusetts, October 1996.

[8] D. H. Friendly, S. J. Patel and Y. N. Patt. Alternative Fetch
and Issue Policies for the Trace Cache Fetch Mechanism.
Proceedings of the 30th Annual ACM/IEEE International
Symposium on Microarchitecture, December, 1997.

[9] Personal communications with David Sager, Pentium
Processor Architecture Group, Intel

[10] M. Horowitz, R. Ho, and K. Mai. “The future of wires.” In
Proceedings of the Semiconductor Research Corporation Work-
23 shop on Interconnects for Systems on a Chip, May 1999.

Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA�02)
1063-6897/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

