3.2 SUPERSCALAR PROCESSOR DESIGN cMu

3.2 SUPERSCALAR PROCESSOR DESIGN

3.2.1

3.2.1.1

In Section 3.1 we focus on the structural, or organizational, design of the superscalar pipeline and
deal with issues that are somewhat independent of the specific types of instructions being pro-
cessed. In this section we focus more on the dynamic behavior of a superscalar processor and
consider techniques that deal with specific types of instructions. The ultimate performance goal
of a superscalar pipeline is to achieve maximum throughput of instruction processing. It is con-
venient to view instruction processing as involving three component flows of instructions and
data, namely, instruction flow, register data flow and memory data flow [Johnson 1991]. Conse-
quently the overall performance objective is to maximize the volumes in all three of these flow
paths. Of course what makes this task interesting is that the three flow paths are not independent
and their interactions are quite complex. This section presents superscalar microarchitecture
techniques, which are classified based on their association with the three flow paths. The three
flow paths of instruction, register data, and memory data, correspond roughly to the processing
of the three major types of instructions, namely branch, ALU, and load/store instructions, respec-

tively.

1. Instruction Flow: Branch instruction processing.
2. Register Data Flow: ALU instruction processing.
3. Memory Data Flow: Load/store instruction processing.

Instruction Flow Techniques

We present instruction flow techniques first because these deal with the early stages, e.g. Fetch
and Decode stages, of a superscalar pipeline. The throughput of the early pipeline stages will
impose an upper bound on the throughput of all subsequent stages. For contemporary pipelined
processors, the traditional partitioning of a processor into control path and data path is no longer
clear and effective. Nevertheless, the early pipeline stages along with the branch execution unit
can be viewed as corresponding to the traditional control path whose primary function is to
enforce the control flow semantics of a program. The primary goal for all instruction flow tech-
niques is to maximize the supply of instructions to the superscalar pipeline subject to the require-
ments of the control flow semantics of a program.

Program Control Flow and Control Dependences
The control flow semantics of a program is specified in the form of the control flow graph

(CFG), in which the nodes represent basic blocks and the edges represent transfer of control flow
between basic blocks. Figure 21(a) illustrates a CFG with four basic blocks (dashed-line rectan-
gles) each containing a number of instructions (ovals). The directed edges represent control
flows between basic blocks. These edges are induced by conditional branch instructions. The
run-time execution of a program entails the dynamic traversal of the nodes and edges of its CFG.
The actual path of traversal is dictated by the branch instructions and their branch conditions
which can be dependent on run-time data.

3.2.1 Instruction Flow Techniques Printed: 6/22/00 3-37

CHAPTER 3 Superscalar Processors J.P. Shen

FIGURE 21

3.21.2

Program control flow: (a) the control flow graph (CFG); (b) mapping the CFG to sequential
memory locations.

(@) | L—" g

(b)

The basic blocks, and their constituent instructions, of a CFG must be stored in sequential loca-
tions in the program memory. Hence the partial ordered basic blocks in a CFG must be arranged
in a total order in the program memory. In mapping a CFG to linear consecutive memory loca-
tions, additional unconditional branch instructions must be added as illustrated in Figure 21(b).
The mapping of the CFG to a linear program memory facilitates an implied sequential flow of
control along the sequential memory locations during program execution. However the encounter
of both conditional and unconditional branches at run time induces deviations from this implied
sequential control flow and the consequent disruptions to the sequential fetching of instructions.
Such disruptions cause stalls in the instruction fetch stage of the pipeline and reduce the overall
instruction fetching bandwidth. Subroutine jump and return instructions also induce similar dis-
ruptions to the sequential fetching of instructions.

Performance Degradation Due to Branches
A pipelined machine achieves its maximum throughput when it is in the streaming mode. For the

fetch stage, streaming mode implies the continuous fetching of instructions from sequential loca-
tions in the program memory. Whenever the control flow of the program deviates from the
sequential path, potential disruption to the streaming mode can occur. For unconditional
branches, subsequent instructions cannot be fetched until the target address of the branch is deter-

341-38

3.2.1 Instruction Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN . cMU

mined. For conditional branches, the machine must wait for the resolution of the branch condi-
tion and if the branch is to be taken it must further wait until the target address is available.
Figure 22 illustrates the disruption of the streaming mode by branch instructions. Branch instruc-
tions are executed by the branch functional unit. For a conditional branch, it is not until it exits
the branch unit and when both the branch condition and the branch target address are known that
the fetch stage can correctly fetch the next instruction.

FIGURE 22

Disruption of sequential control flow by branch instructions.

- - Fetch
1
1l Iul [T1 Instruction/Decode Buffer
Decode
|
i Ipl [1T 1 Dispatch Buffer
| Dispatch
Y Y r v Y
- — - ; Reservation
Issueuv'uuT‘—” 1'|] | ITI 11 [TlJ Stations
nch —
Execute
i Y v i /
-~ Finish _ _ T TTTTTTTT11]Reorder/
| Completion Buffer
[Complete
T
i lul I 1 1 Store Buffer
Retire

As Figure 22 illustrates, this delay in processing conditional branches incur a penalty of three
cycles in fetching the next instruction, corresponding to the traversal of the Decode, Dispatch and
the Execute stages by the conditional branch. The actual lost-opportunity cost of three stalled
cycles is not just three empty instruction slots as in the scalar pipeline but must be multiplied by
the width of the machine. For example, for a 4-wide machine the total penalty is 12 instruction
“bubbles” in the superscalar pipeline. Also recall from the last chapter, such pipeline stall cycles
effectively correspond to the “sequential bottleneck” of the Amdahl’s law and rapidly and signif-
icantly reduces the actual performance from the potential peak performance.

3.2.1 Instruction Flow Techniques Printed: 6/22/00 3-39

CHAPTER 3 Superscalar Processors J.P. Shen

For conditional branches, the actual number of stalled or penalty cycles can be dictated by either
target address generation or condition resolution. Figure 23 illustrate the potential cycles that can
be incurred by target address generation. The actual number of penalty cycles is determined by
the addressing modes of the branch instructions. For PC-relative addressing mode, the branch
target address can be generated during the Fetch stage resulting in a penalty of one cycle. If reg-
ister indirect addressing mode is used, the branch instruction must traverse the Decode stage to
access the register. In this case a two-cycle penalty is incurred. With register indirect with an off-
set addressing mode the offset must be added after register access and a total three-cycle penaity
can result. For unconditional branches, only penalties due to target address generation are of con-
cern. For conditional branches, branch condition resolution latency must also be considered.

FIGURE 23 Branch target address generation penalties.

A 2 Fetch
| I .
| g Pc-v L1 L] []Decode Buffer
i rel. | £
| Reg.' . Decode
g ind. ! T

Reg. | i L LII'J]-.]:.] Dispatch Buffer

ind. 1

with 1 L = == =44 Dispatch

offsetl
: * l Reservation
----- HEEjEEE o1) ol 1] Stations
] Issue
| L 1
| W

Execute

/ Y / i

1::] Completion Buffer

- — Finish _ _ 1 1||T' TT T

Complete

=1:'] Store Buffer

Retire

Different methods for performing condition resolution can also lead to different penalties.
Figure 24 illustrates two possible penalties. If condition code registers are used, and assuming
that the relevant condition code register is accessed during the Dispatch stage then a penalty of

3-40

3.2.1 Instruction Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cMu

two cycles will result. If the ISA permits the comparison of two general purpose registers to gen-
erate the branch condition then one more cycle is needed to perform an ALU operation on the
contents of the two registers. This will result in a penalty of three cycles. For a conditional
branch, depending on the addressing mode and condition resolution method used, either one of
the penalties may be the critical one. For example, even if the PC-relative addressing mode is
used, a conditional branch that must access a condition code register will still incur a two-cycle
penalty instead of the one-cycle penalty for target address generation.

FIGURE 24

Execute

Branch condition resolution penalties.

- - Fetch
] FI:I [..1.] Decode Buffer
Decode
B : [CI=I0] Dispatch Buffer
Dispatch

Reservation
1.] Stations

4 Y Y \ \

- — Finish _ _ T TTT LETTTT Completion Butfer

Complete
T

Store Buffer

Retire

Maximizing the volume of the instruction flow path is equivalent to maximizing the sustained
instruction fetch bandwidth. In order to do this the number of stall cycles in the fetch stage must
be minimized. Recall that the total lost-opportunity cost is equal to the product of the number of
penalty cycles and the width of a machine. For an n-wide machine each stalled cycle is equal to
fetching n no-op instructions. The primary aim of instruction flow techniques is to minimize the
number of such fetch stall cycles and/or to make use of these cycles to do potentially useful

3.2.1 Instruction Flow Techniques Printed: 6/22/00 3-41

CHAPTER 3 Superscalar Processors J.P. Shen

3.2.1.3

work. The current dominant approach to accomplishing this is via branch prediction which is the
subject of the next subsubsection.

Branch Prediction Techniques
Experimental studies have shown that the behavior of branch instructions are highly predictable.

A key approach to minimize branch penalty and maximize instruction flow throughput is to spec-
ulate on both branch target addresses and branch conditions of branch instructions. As a static
branch instruction is repeatedly executed at run time, its dynamic behavior can be tracked. Based
on its past behavior, its future behavior can be effectively predicted. Two fundamental compo-
nents of branch prediction are branch target speculation and branch condition speculation. With
any speculative technique, there must be mechanisms to validate the prediction and to safely
recover from any mispredictions. Branch misprediction recovery will be covered in the next sub-

subsection.

Branch target speculation involves the use of a branch target buffer (BTB) to store previous
branch target addresses. BTB is a small cache memory accessed during the instruction fetch stage
using the instruction fetch address (PC). Each entry of the BTB contains two fields: branch
instruction address (BIA) and branch target address (BTA). When a static branch instruction is
executed for the first time, an entry in the BTB is allocated for it. Its instruction address is stored
in the BIA field and its target address is stored in the BTA field. Assuming the BTB is a fully
associative cache, the BIA field is used for the associative access of the BTB. The BTB is
accessed concurrently with the accessing of the I-cache. When the current PC matches the BIA
of an entry in the BTB, a hit in the BTB results. This implies that the current instruction being
fetched from the I-cache has been executed before and is a branch instruction. When a hit in the
BTB occurs, the BTA field of the hit entry is accessed and can be used as the next instruction
fetch address if that particular branch instruction is predicted to be taken; see Figure 25.

3-42

3.2.1 Instruction Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cMu

FIGURE 25

Branch target speculation using a branch target buffer (BTB).

Branch Target Buffer (BTB)

ﬁgggﬁ: Branch instruction Branch target
address (BIA) field address (BTA) field

4 Access

cesernB B [BIA BTA

I

PC g
(instruction !
fetch address) %

@ speculative

!‘ M UGN B EUm TR MM MW AN ru F- 3
(used as the new PC if branch is predlctcd taken) target address

By accessing the BTB using the branch instruction address and retrieving the branch target
address from the BTB all during the Fetch stage, the speculative branch target address will be
ready to be used in the next machine cycle as the new instruction fetch address if the branch
instruction is predicted to be taken. If the branch instruction is predicted to be taken and this pre-
diction turned out to be correct, then the branch instruction is effectively executed in the Fetch
stage incurring no branch penaity. The non-speculative execution of the branch instruction is still
performed for purpose of validating the speculative execution. The branch instruction is still
fetched from the I-cache and executed. The resultant target address and branch condition are
compared with the speculative version. If they agree, then correct prediction was made, other-
wise misprediction has occurred and recovery must be initiated. The result from the non-specula-
tive execution is also used to update the content, i.c. BTA field, of the BTB.

There are a number of ways to do branch condition speculation. The simplest form is to design
the hardware to be biased for not taken, i.e. always predict not taken. When a branch instruction
is encountered, prior to its resolution, the Fetch stage continues fetching down the fall through
path without stalling. This form of minimal branch prediction is easy to implement but not very
effective. For example, many branches are used as loop closing instructions, which are mostly
taken during execution except when exiting loops. Another form of prediction employs software
support and can require ISA changes. For example, an extra bit can be allocated in the branch
instruction format that is set by the compiler. This bit is used as a hint to the hardware to perform
either predict not taken or predict taken depending the value of this bit. The compiler can use
branch instruction type and profiling information to determine the most appropriate value for this
bit. This allows each static branch instruction to have its own specified prediction. However, this

3.2.1 instruction Flow Techniques Printed: 6/22/00 3-43

CHAPTER 3 Superscalar Processors J.P. Shen

prediction is static in the sense that the same prediction is used for all dynamic executions of the
branch. Such static software prediction technique is used in the Motorola M88110 [keith]. A
more aggressive and dynamic form of prediction makes prediction based on the branch target
address offset. This form of prediction first determines the relative offset between the address of
the branch instruction and the address of the target instruction. A positive offset will trigger the
hardware to predict not taken; whereas a negative offset, most likely indicating a loop closing
branch, will trigger the hardware to predict taken. This branch offset based technique is used in
the original IBM RS/6000 design [IBMrs6k] and has been adopted by other machines as well.
The most common branch condition speculation technique employed in contemporary supersca-
lar machines is based on the history of previous branch executions.

History-based branch prediction makes prediction of the branch direction, whether taken (T) or
not taken (N), based on previously observed branch directions. The assumption is that historical
information on the direction that a static branch takes in previous executions can give helpful
hints on the direction that it is likely to take in future executions. Design decisions for such type
of branch prediction includes how much history should be tracked and for each observed history
pattern what prediction should be made. The specific algorithm for history-based branch direc-
tion prediction can be characterized by a finite state machine (FSM); see Figure 26. The n state
variables encode the directions taken by the last n executions of that branch. Hence each state
represents a particular history pattern in terms of a sequence of takens and not takens. The output
logic generates a prediction based on the current state of the FSM. Essentially, a prediction is
made based on the outcome of the previous n executions of that branch. When a predicted branch
is finally executed, the actual outcome is used as an input to the FSM to trigger a state transition.
The next state logic is trivial; it simply involves chaining the state variables into a shift register,
which records the branch directions of the previous n executions of that branch instruction.

FIGURE 26 - FSM model for history-based branch direction predictors.

Si S Sp.; Sa

Actual direction
of resolved branch

. s Output logic:
Predicted directio produces prediction

of fetched branch based on current state

Figure 27 (a) illustrates the FSM diagram of a typical “2-bit” branch predictor that employs two
history bits to track the outcome of two previous executions of the branch. The two history bits

3-44 3.2.1 Instruction Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN CcMU

constitute the state variables of the FSM. The predictor can be in one of four states: NN, NT, TT,
or TN representing the directions taken in the previous two executions of the branch. The NN
state can be designated as the initial state. An output value of either T or N is associated with
each of the four states representing the prediction that would be made when a predictor is in that
state. When a branch is executed, the actual direction taken is used as an input to the FSM and
state transition occurs to update the branch history which will be used to do the next prediction.

The particular algorithm implemented in the predictor of Figure 27 (a) is biased towards predict-
ing branches to be taken; note that 3 of the 4 states predict the branch to be taken. It anticipates
either long runs of N's (in the NN state) or long runs of T’s (in the TT state). As long as at least
one of the two previous executions was a taken branch, it will predict the next execution to be
taken. The prediction will only be switched to not taken, when it has encountered two consecu-
tive Ns in a roll. This represents one particular branch-direction prediction algorithm; clearly
there are many possible designs for such history-based predictors and many designs have been
evaluated by researchers.

FIGURE 27

history

predicted

History based branch prediction: (a) a 2-bit branch predictor algorithm; (b) branch target buffer
(BTB) with an additional field for storing branch history bits.

l-cache Branch instruction Branch target Branch
address field address field Histo
BTB
BIA BTA
PC
«—initial .
state speculative

target address

redic) predict taken
direction actual direction or not taken
(a) (b)

To support history-based branch-direction predictors, the BTB can be augmented to include a
history field for each of its entries. The width, in number of bits, of this field is determined by the
number of history bits being tracked. When a PC address hits in the BTB, in addition to the spec-
ulative target address, the history bits are also retrieved. These history bits are fed to the logic
that implements the next-state and output functions of the branch predictor FSM. The retrieved
history bits are used as the state variables of the FSM. Based on these history bits, the output
logic produces the 1-bit output that indicates the predicted direction. If the prediction is a taken

3.2.1 Instruction Flow Techniques Printed: 6/22/00 . 3-45

CHAPTER 3 Superscalar Processors - J.P. Shen

branch, then this output is used to steer the speculative target address to the PC to be used as the
new instruction fetch address in the next machine cycle. If the prediction turns out to be correct,
then effectively the branch instruction has been executed in the Fetch stage without incurring any

penalty or stalled cycle.

A classic experimental study on branch prediction was done by Lee and Smith [lee&smith84]. In
this study, 26 programs from six different types of workloads for three different machines (IBM
370, DEC PDP-11, and CDC 6400) were used. Averaged across all the benchmarks, 67.6% of the
branches were taken while 32.4% were not taken. Branches tend to be taken more than not taken
by a ratio of two to one. With static branch prediction based on the op-code type, the prediction
accuracy ranged from 55% to 80% for the six workloads. Using only one bit of history, history-
based dynamic branch prediction achieved prediction accuracy ranging from 79.7% to 96.5%.
With two history bits, the accuracy for the six workloads ranged from 83.4% to 97.5%. Contin-
ved increase of the number of history bits brought additional incremental accuracy. However
beyond four history bits there is very minimal increase in the prediction accuracy. They imple-
mented a 4-way set associative BTB that had 128 sets. The averaged BTB hit rate was 86.5%.
Combining prediction accuracy with the BTB hit rate, the resultant average prediction effective-
ness was approximately 80%.

A more recent experimental study was done at IBM by Nair using the RS/6000 architecture and
SPEC benchmarks [Nair92)]. This is a very comprehensive study of possible branch prediction
algorithms. The goal for branch prediction is to overlap the execution of branch instructions with
that of other instructions so as to achieve “zero cycle” branches or accomplish “branch folding,”
i.e. branches are folded out of the critical latency path of instruction execution. This study per-
formed an exhaustive search for optimal 2-bit predictors. There are 220 possible FSM’s of 2-bit
predictors. Nair determined that many of these machines are uninteresting and pruned the entire
design space down to 5,248 machines. Extensive simulations are performed to determine the
optimal (achieves the best prediction accuracy) 2-bit predictor for each of the benchmarks. The
list of SPEC benchmarks, their best prediction accuracies, and the associated optimal predictors

are shown in Figure 28.

In Figure 28, the states denoted with bold circles represent states in which the branch is predicted
taken; the non-bold circles represent states that predict not taken. Similarly the bold edges repre-
sent state transitions when the branch is actually taken; the non-bold edges represent transitions
corresponding to the branch actually not taken. The state denoted with “*” indicates the initial
state. The prediction accuracy for the optimal predictors of these six benchmarks range from
87.1% to 97.2%. Notice that the optimal predictors for doduc, gec and espresso, are identical
(disregarding the different initial state of the gcc predictor) and exhibit the behavior of a 2-bit up/
down saturating counter. We can label the four states from left to right as *“0”, “1”, “2”, and “3”
representing the four count values of a 2-bit counter. Whenever a branch is resolved taken the
count is incremented, and decremented otherwise. The two lower-count states predict a branch to
be not taken while the two higher-count states predict a branch to be taken. Figure 28 also pro-
vides the prediction accuracies for the six benchmarks if the 2-bit saturating counter predictor is

3.2.1 Instruction Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cmu

used for all six benchmarks. The prediction accuracies for spice2g6, li, and egntort only decrease
minimally from their optimal values, indicating that the 2-bit saturating counter is a good candi-
date for general use on all benchmarks. In fact, the 2-bit saturating counter has become a popular

prediction algorithm in real and experimental designs.

FIGURE 28 Optimal 2-bit branch predictors for six SPEC benchmarks [Nair92].
Benchmark Optimal “Counter” N
spice2gb ~ 97.2 97.0 T

doduc 94.3 94.3 Q@;::O::o::cp

espresso 89.1 89.1 Q@Zm

I 87.1 86.8 w
eqntott ~ 87.9 87.2 OW

@ initial state O predict NT O predict T

The same study also investigated the effectiveness of counter based predictors. With an 1-bit
counter as the predictor, i.e. remembers the direction taken last time and predicts the same direc-
tion for the next time, the prediction accuracies ranged from 82.5% to 96.2%. As we have seen in
Figure 28, a 2-bit counter yields accuracy range of 86.8% to 97.0%. If a 3-bit counter is used the
increase in accuracy is minimal, it ranges from 88.3% to 97.0%. Based on this study, the 2-bit
saturating counter appears to be a very good choice for a history-based predictor. Direct-mapped
branch history tables are assumed in this study. While some programs, such as gcc, have over
7,000 conditional branches, for most programs, the branch penalty due to aliasing in finite-sized
branch history tables levels out at about 1,024 entries for the table size.

3.2.1 Instruction Flow Techniques Printed: 6/22/00 3-47

CHAPTER 3 Superscalar Processors J.P. Shen

3.2.1.4 Branch Misprediction Recovery
Branch prediction is a speculative technique. Any speculative technique requires mechanisms for

validating the speculation. Dynamic branch prediction can be viewed as consisting of two inter-
acting engines. The leading engine performs speculation in the front-end stages of the pipeline
while a trailing engine performs validation in latter stages of the pipeline. In the case of mispre-
diction the trailing engine also performs recovery. These two aspects of branch prediction are

illustrated in Figure 29.

FIGURE 29 Two aspects of branch prediction: (a) branch speculation; (b) branch validation/recovery.

NT T (TAGI1)

NT
(TAG2)g ~

NT

TAG2) V(TAG 1)

Branch speculation involves predicting the direction of a branch and then proceeding to fetch
along the predicted path of control flow. While fetching from the predicted path, additional
branch instructions may be encountered. Prediction of these additional branches can be similarly
performed, potentially resulting in speculating passed multiple conditional branches before the
first speculated branch is resolved. Figure 29 (a) illustrates speculating passed three branches
with the first and the third branches being predicted taken and the second one predicted not

(b)

8-48 3.2.1 Instruction Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN CMU

taken. When this occurs, instructions from three speculative basic blocks are now resident in the
machine and must be appropriately identified. Instructions from each speculative basic block are
given the same identifying tag. In the example of Figure 29 (a), three distinct tags are used to
identify the instructions from the three speculative basic blocks. A tagged instruction indicates
that it is a speculative instruction, and the value of the tag identifies which basic block it belongs
to. As a speculative instruction advances down the pipeline stages, the tag is also carried along.
When speculating, the instruction addresses of all the speculated branch instructions (or the next
sequential instructions) are buffered in the event that recovery is required.

Branch validation occurs when the branch is executed and the actual direction of a branch is
resolved. The correctness of the earlier prediction can then be determined. If the prediction turns
out to be correct, the speculation tag is deallocated and all the instructions associated with that
tag become non-speculative and are allowed to complete. If a misprediction is detected, two
actions are required, namely the incorrect path must be terminated and fetching from a new cor-
rect path must be initiated. To initiate a new path, the PC must be updated with a new instruction
fetch address. If the incorrect prediction was a not-taken prediction, then the PC is updated with
the computed branch target address. If the incorrect prediction was a taken prediction, then the
PC is updated with the sequential (fall through) instruction address, which is obtained from the
previously buffered instruction address when the branch was predicted taken. Once the PC has
been updated, fetching of instructions resumes along the new path and branch prediction begins
anew. To terminate the incorrect path, speculation tags are used. All the tags that are associated
with the mispredicted branch are used to identify the instructions that must be eliminated. All
such instructions that are still in the decode and dispatch buffers as well as those in reservation
station entries are invalidated. Reorder buffer entries occupied by these instructions are deallo-
cated. Figure 29 (b) illustrates this validation/recovery task when the second of the three predic-
tions is incorrect. The first branch is correctly predicted and therefore instructions with Tag 1
become non-speculative and are allowed to complete. The second prediction is incorrect and all
the instructions with Tag 2 and Tag 3 must be invalidated and their reorder buffer entries must be
deallocated. After fetching down the correct path, branch prediction can begin once again and
Tag | is used again to denote the instructions in the first speculative basic block. During branch
validation, the associated BTB entry is also updated. <speculative updates?>

We now use the PowerPC 604 superscalar microprocessor to illustrate the implementation of
dynamic branch prediction in a real superscalar processor. The 604 is a 4-wide superscalar capa-
ble of fetching, decoding and dispatching up to four instructions in every machine cycle. Instead
of a single unified BTB, the 604 employs two separate buffers to support branch prediction,
namely the Branch Target Address Cache (BTAC) and the Branch History Table (BHT); see
Figure 30. The BTAC is a 64-entry fully-associative cache that stores the branch target addresses
while the BHT, a 512-entry direct-mapped table, stores the history bits of branches. The reason
for this separation will become clear shortly.

3.2.1 Instruction Flow Techniques Printed: 6/22/00 3-49

CHAPTER 3 Superscalar Processors J.P. Shen

FIGURE 30 _ Branch prediction in the PowerPC 604 superscalar microprocessor.

;FA +FA>~’~: ache)

‘Branch History| |Branch Target:
Address Cache
(BHT) (BTAC)

__ ‘3;

+4 '
ABTAC
L update (T 111 Decode Buffer
BHT
BHT prediction update Decode
BTAC prediction I 11 Dispatch Buffer
Dispatch Reservation
] Stations
yBRN JSFX {SFX JCFX {FPU LS
I.éé-ué - A R S R
ranc
Execute
Y / y r Y i
Finish. - T T T Ty T e e gopereto”

Buffer

Both the BTAC and the BHT are accessed during the Fetch stage using the current instruction
fetch address in the PC. The BTAC responds in one cycle, however, the BHT requires two cycles
to complete its access. If a hit occurs in the BTAC, indicating the presence of a branch instruction
in the current fetch group, a predict taken occurs and the branch target address retrieved from the
BTAC is used in the next fetch cycle. Since the 604 fetches four instructions in a fetch cycle,
there can be multiple branches in the fetch group, hence, the BTAC entry indexed by the fetch
address contains the branch target address of the first branch instruction in the fetch group that is
predicted to be taken. In the second cycle, or during the Decode stage, the history bits retrieved
from the BHT are used to generate a history-based prediction on the same branch. If this predic-
tion agrees with the taken prediction made by the BTAC, the earlier prediction is allowed to
stand. On the other hand, if the BHT prediction disagrees with the BTAC prediction, the BTAC
prediction is annulled and fetching from the fall-through path, corresponding to predict not taken,

3-50 3.2.1 Instruction Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cCMu

3.2.15

is initiated. In essence, the BHT prediction can overrule the BTAC prediction. As expected, in
most cases the two predictions agree. In some cases, the BHT corrects the wrong prediction made
by the BTAC. It is possible, however, for the BHT to erroneously change the correct prediction
of the BTAC; this occurs very infrequently. When a branch is resolved, the BHT is updated and
based on its updated content the BHT in turns updates the BTAC by either leaving an entry in the
BTAC if it is to be predicted taken the next time, or deleting an entry from the BTAC if that
branch is to be predicted not taken.

The 604 has four entries in the reservation station that feed the branch execution unit. Hence it
can speculate passed up to four branches, i.c. there can be a2 maximum of four speculative
branches present in the machine. To denote the four speculative basic blocks involved, a 2-bit tag
is used to identify all speculative instructions. After a branch resolves, branch validation takes
place and all speculative instructions are either made non-speculative or are invalidated via the
use of the 2-bit tag. Reorder buffer entries occupied by mis-speculated instruction are deallo-
cated. Again, this is performed using the 2-bit tag. <overall prediction accuracy of the BTAC and
BHT and misprediction penalties???>

Advanced Branch Prediction Techniques
The dynamic branch prediction schemes discussed thus far have a number of limitations. Predic-

tion for a branch is made based on the limited history of only that particular static branch instruc-
tion. The actual prediction algorithm does not take into account the dynamic context within
which the branch is being executed. For example, it does not make use of any information on the
particular control flow path taken in arriving at that branch. Furthermore the same fixed algo-
rithm is used to make the prediction regardless of the dynamic context. It has been observed
experimentally that the behavior of certain branches are strongly correlated with the behavior of
other branches that precede them during execution. Consequently more accurate branch predic-
tion can be achieved with algorithms that take into account the branch history of other correlated
branches and that can adapt the prediction algorithm according to the dynamic branching con-
text.

In 1992, Yeh and Patt proposed a two-level adaptive branch prediction technique [Yeh&Patt92]
that can potentially achieve better than 95% prediction accuracy by having a highly flexible pre-
diction algorithm that can adapt to changing dynamic contexts. In previous schemes, a single
branch history table is used and indexed by the branch address. For each branch address there is
only one relevant entry in the branch history table. In the two-level adaptive scheme, a set of his-
tory tables is used. These are identified as the Pattern History Table (PHT); see Figure 31. Each
branch address indexes to a set of relevant entries; one of these entries is then selected based on
the dynamic branching context. The context is determined by a specific pattern of recently exe-
cuted branches stored in a Branch History Shift Register (BHSR); see Figure 31. The content of
BHSR is used to indexed into the PHT to select one of the relevant entries. The content of this
entry is then used as the state for the prediction algorithm FSM to produce a prediction. When a
branch is resolved, the branch result is used to update both the BHSR and the selected entry in

the PHT.

3.2.1 Instruction Flow Techniques Printed: 6/22/00 3-51

CHAPTER 3 Superscalar Processors J.P. Shen

FIGURE 31

Two-level adaptive branch prediction [Yeh&Patt32].
Pattern History Table (PHT)

Branch Instruction Address ——-—v woov

* Branch History Shift > —
Register (BHSR) 00...01

(shift left when update) o...10 -
1j0f1 111
111 0{0
11...10
iﬂdy 1..11
—11 11 |1 1{0
Branch Result

The two-level adaptive branch prediction technique actually specifies a framework within which
many possible designs can be implemented. There are two options to implementing the BHSR:
global (G) or individual (P). The global implementation employs a single BHSR of k bits that
tracks the branch directions of the last k dynamic branch instructions in program execution.
These can involve any number (one to k) of static branch instructions. The individual (called
“per-branch” in [Yeh&Pat192]) implementation employs a set of k-bit BHSRs as illustrated in
Figure 31, one of which is selected based on the branch address. Essentially the global BHSR is
shared by all static branches; whereas with individual BHSR’s each BHSR is dedicated to each
static branch or a subset of static branches if there is address aliasing when indexing into the set
of BHSR’s using the branch address. There are three options to implementing the PHT: global
(g), individual (p), or shared (s). The global PHT uses a single table to support the prediction of
all static branches. Alternatively, individual PHT’s can be used in which each PHT is dedicated
to each static branch (p) or a small subset of static branches (s) if there is address aliasing when
indexing into the set of PHT"s using the branch address. A third dimension to this design space
involves the implementation of the actual prediction algorithm. When a history-based FSM is
used to implement the prediction algorithm Yeh and Patt identified such schemes as adaptive
(A).

8-52

3.2.1 Instruction Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cmu

All possible implementations of the two-level adaptive branch prediction can be classified based
on these three dimensions of design parameters. A given implementation can then be denoted
using a three-letter notation, e.g. GAs represents a design that employs a single global BHSR, an
adaptive prediction algorithm, and a set of PHT’s with each being shared by a number of static
branches. Yeh and Patt presented three specific implementations that are able to achieve predic-
tion accuracy of 97% for their given set of benchmarks. These are listed below:

o GAg: (1) BHSR of size: 18 bits; (1) PHT of size: 2'8 x 2 bits
e PAg: (512 x 4) BHSR’s of size: 12 bits; (1) PHT of size: 2'2 x 2 bits
e PAs: (512 x 4) BHSR’s of size: 6 bits; (512) PHTs of size: 29 x 2 bits

All three implementations use an adaptive (A) predictor that is a 2-bit FSM. The first implemen-
tation employs a global BHSR (G) of 18 bits and a global PHT (g) with 2'8 entries indexed by
the BHSR bits. The second implementation employs 512 sets (4-way set associative) of 12-bit
BHSR’s (P) and a global PHT (g) with 212 entries. The third implementation also employs 512
sets of 4-way set associative BHSR’s (P), but each being only 6-bit wide. It also uses 512 PHT’s
(s), each having 2 entries indexed by the BHSR bits. Both the 512 sets of BHSR's and the 512
PHT’s are indexed using 9 bits of the branch address. Additional branch address bits are used for
the set-associative access of the BHSR’s. The 512 PHT s are direct mapped and there.can be
aliasing, i.e. multiple branch addresses sharing the same PHT. From experimental data, such
aliasing had minimal impact on degrading the prediction accuracy. Achieving great than 95%
prediction accuracy by the two-level adaptive branch prediction schemes is quite impressive; the
best traditional prediction techniques can only achieve about 90% prediction accuracy. The two-
level adaptive branch prediction approach has been adopted by a number of real designs, includ-
ing the Intel Pentium Pro and the AMD/NexGen Nx686 {272, 71?].

Following the original Yeh and Patt proposal, other recent studies have gained further insights
into two-level adaptive, or more recently called correlated, branch predictors [McFarling93,
Young et al.95, Gloy et al.96]). Figure 32 illustrates a correlated branch predictor with a global
BHSR (G) and a shared PHT (s). The 2-bit saturating counter is used as the predictor FSM. The
global BHSR tracks the directions of the last k dynamic branches and captures the dynamic con-
trol-flow context. The PHT can be viewed as a single table containing a two-dimensional array,
with 2} columns and 2* rows, of 2-bit predictors. If the branch address has n bits, a subset of j bits
are used to index into the PHT to select one of the 2J columns. Since j is less than n, some alias-
ing can occur where two different branch addresses can index into the same column of the PHT.
Hence the designation of “shared”” PHT. The k bits from the BHSR are used to select one of the
2K entries in the selected column. The 2 history bits in the selected entry is used to make a his-
tory-based prediction. The traditional branch history table (BHT) is equivalent to having only
one row of the PHT that is indexed only by the j bits of the branch address, as illustrated in
Figure 32 by the dashed rectangular block of 2-bit predictors in the first row of the PHT.

3.2.1 Instruction Flow Techniques Printed: 6/22/00 3-53

CHAPTER 3 Superscalar Processors J.P. Shen

FIGURE 32 Correlated branch predictor with global BHSR and shared PHT's (GAs) [Gloy et al. 96].

Branch Address

r p
Global Branch History l@ @ @ @
Shift Register (BHSR) L = 4

\

Prediction

@ = 2-bit saturating @ @ @ @

counter FSM PHTof 2Kx2ix2

FIGURE 33 Correlated branch predictor with individual BHSR's and shared PHT’s (PAs) [Gloy et al. 96].

[Branch Address |

i bits . j bits

Individual Branch History
Shift Registers (BHSR)

i XX
- 200 ®
| eeee
=200

PHT of 2Kx23x2

Prediction

8-54 3.2.1 Instruction Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cMmu

Figure 33 illustrates a correlated branch predictor with individual, or “per-branch,” BHSR’s (P)
and the same shared PHT (s). Similar to the GAs scheme, the PAs scheme also uses j bits of the
branch address to select one of the 2J columns of the PHT. However, i bits of the branch address,
which can overlap with the j bits used to access the PHT, are used to index into a set of BHSR’s.
Depending on the branch address, one of the 21 BHSR's is selected. Hence each BHSR is associ-
ated with one particular branch address, or a set of branch addresses if there is aliasing. Essen-
tially, instead of using a single BHSR to provide the dynamic control-flow context for all static
branches, multiple BHSR's are used to provide distinct dynamic control-flow contexts for differ-
ent subsets of static branches. This adds additional flexibility in tracking and exploiting correla-
tions between different branch instructions. Each BHSR tracks the directions of the last k
dynamic branches belonging to the same subset of static branches. Both the GAs and the PAs
schemes require a PHT of size 2K x 29 x 2 bits. The GAs scheme has only one k-bit BHSR
whereas the PAs scheme requires 2! k-bit BHSR's.

A fairly efficient correlated branch predictor called gshare has been proposed by McFarling
[McFarling93]. In this scheme, j bits from the branch address are “hashed” (via bit-wise XOR
function) with the k bits from a global BHSR; see Figure 34. The resultant max {k.j} bits are used
to index into a PHT of size 2™#*{kJ} x 2 bits to select one of the 2™2*{kJ} 2_pit branch predictors.
The gshare scheme requires only one k-bit BHSR and a much smaller PHT, and yet achieves
comparable prediction accuracy as other correlated branch predictors. This scheme is used in the
DEC Alpha 21264 4-way superscalar microprocessor [??7?).

FIGURE 34

The gshare correlated branch predictor [McFarling93).

Branch Address

Global Branch History
Shift Register (BHSR)

Prediction

k bits max{k,j} bits

PO ®

PHT of 2maxiki} y

3.2.1 Instruction Flow Techniques Printed: 6/22/00 3-55

CHAPTER 3 Superscalar Processors J.P. Shen

3.2.1.6 Other Instruction Flow Techniques
The primary objective for instruction-flow techniques is to supply as many useful instructions as
possible to the execution core of the processor. The two major challenges deal with conditional
branches and taken branches. For a wide superscalar processor, to provide adequate conditional
branch throughput, the processor must very accurately predict the outcomes and targets of multi-
ple conditional branches in every machine cycle. For example, in a fetch group of four instruc-
tions, it is possible that all four instructions are conditional branches. Ideally one would like to
use the addresses of all four instructions to index into a 4-ported BTB to retrieve the history bits
and target addresses of all four branches. A complex predictor can then make an overall predic-
tion based on all the history bits. Speculative fetching can then proceed based on this prediction.
Techniques for predicting multiple branches in every cycle have recently been proposed
[conte95, rotenberg96]. It is also important to ensure high accuracy in such predictions. Global
branch history can be used in conjunction with per-branch history to achieve very accurate pre-
dictions [superflow97]. For those branches or sequences of branches that do not exhibit strongly
biased branching behavior and therefore are not predictable, dynamic eager execution (DEE) has
been proposed. DEE [uht95] employs multiple PC’s to simultaneously fetch from multiple
addresses. Essentially the fetch stage pursues down multiple control flow paths until some
branches are resolved, at which time, some of the wrong paths are dynamically pruned by invali-
dating the instructions on those paths.

Taken branches are the second major obstacle to supplying enough useful instructions to the exe-
cution core. In a wide machine the fetch unit must be able to correctly process more than one
taken branch per cycle, which involves predicting each branch’s direction and target, and fetch-
ing, aligning, and merging instructions from multiple branch targets. A promising approach in
alleviating this problem called the trace cache [rotenberg96] has recently been proposed. Trace
cache is a history-based fetch mechanism that stores dynamic instruction traces in a cache
indexed by the fetch address and branch outcomes. These traces are assembled dynamically
based on the dynamic branching behavior and can contain multiple non-consecutive basic blocks.
Whenever the fetch address hits in the trace cache, instructions are fetched from the trace cache
rather than the instruction cache. Since a dynamic sequence of instructions in the trace cache can
contain multiple taken branches but is stored sequentially, there is no need to fetch from multiple
targets, and no need for a multiported instruction cache or complex merging and aligning logic in
the fetch stage. The trace cache can be viewed as doing dynamic basic block reordering accord-
ing to the dominant execution paths taken by a program. The merging and aligning is done at
completion time when non-consecutive basic blocks on a dominant path are first executed to
assemble a trace, which is then stored in one line of the trace cache. The goal is that once the
trace cache is “warmed up” most of the fetching will come from the trace cache instead of the
instruction cache. Since the reordered basic blocks in the trace cache better match the dynamic
execution order, there will be fewer fetches from non-consecutive locations in the trace cache,
and there will be an increase in the overall throughput of taken branches.

3.2.1 Instruction Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN . cMuU

3.2.2 Register Data Flow Techniques

3.2.2.1

Register data-flow techniques concern the effective execution of ALU (or register-register) type
instructions in the execution core of the processor. It can be viewed that ALU instructions per-
form the “real” work specified by the program, with control-flow and load-store instructions
playing the supportive roles of providing the necessary instructions and the required data, respec-
tively. In the most ideal machine, branch and load/store instructions, being *“overhead” instruc-
tions, should take no time to execute and the computation latency should be strictly determined
by the processing of ALU instructions. The effective processing of these instructions is founda-
tional to achieving high performance.

Assuming a load-store architecture, ALU instructions specify operations to be performed on
source operands stored in registers. Typically an ALU instruction specifies a binary operation,
two source registers where operands are to be retrieved and a destination register where the result
is to be placed. R; « F,(R;.R,) specifies a typical ALU instruction, the execution of which
requires the availability of: 1) F,, the functional unit; 2) R; and Ry, the two source operand regis-
ters; and 3) R;, the destination register. If the functional unit F,, is not available, then a structural
dependence exists that can result in a structural hazard. If one or both of the source operands in R;
and Ry is not available then a hazard due to true data dependence can occur. If the destination reg-
ister R; is not available then a hazard due to anti and output dependences can occur.

Register Reuse and False Data Dependences

The occurrence of anti and output dependences, or false data dependences, is due to the reuse of
registers. If registers are never reused to store operands, then such false data dependences will
not occur. The reuse of registers is commonly referred to as register recycling. Register recycling
occurs in two different forms, one static and one dynamic. The static form is due to optimization
performed by the compiler and is presented first. In a typical compiler, towards the back-end of
the compilation process two tasks are performed: code generation and register allocation. Code
generation task is responsible for the actual emitting of machine instructions. Typically the code
generator assumes the availability of an unlimited number of symbolic registers in which it stores
all the temporary data. Each symbolic register is used to store one value and is only written once,
producing what is commonly referred to as “single-assignment” code []. However an ISA has a
limited number of architected registers and hence the register allocation tool is used to map the
unlimited number of symbolic registers to the limited and fixed number of architected registers.
The register allocator attempts to keep as many of the temporary values in registers as possible to
avoid having to move the data out to memory locations and reloading them later on. It accom-
plishes this by reusing registers. A register is written with a new value when the old value stored
there is no longer needed; effectively each register is recycled to hold multiple values.

Writing of a register is referred to as the definition of a register and the reading of a register as the
use of a register. After each definition there can be one or more uses of that definition. The dura-
tion between the definition and the last use of a value is referred to as the live range of that value.
After the last use of a live range, that register can be assigned to store another value and begin
another live range. Register allocation procedures attempt to map non-overlapping live ranges

3.2.2 Register Data Flow Techniques Printed: 6/22/00 3-57

CHAPTER 3 Superscalar Processors J.P. Shen

3.2.2.2

into the same architected register and maximize register reuse. In single-assignment code there is
a one-to-one correspondence between symbolic registers and values. After register allocation
each architected register can receive multiple assignments and the register becomes a variable
that can take on multiple values. Consequently the one-to-one correspondence between registers

and values is Jost.

If the instructions are executed sequentially and a redefinition is never allowed to precede the
previous definition or the last use of the previous definition, then the live ranges that share the
same register will never overlap during execution and the recycling of registers does not induce
any problem. Effectively, the one-to-one correspondence between values and registers can be
maintained implicitly if al] the instructions are processed in the original program order. However,
in a superscalar machine, especially with out-of-order processing of instructions, registers read-
ing and writing operations can occur in an order different from the program order. Consequently
the one-to-one correspondence between values and registers can potentially be perturbed; in
order to ensure semantic correctness all anti and output dependences must be detected and
enforced. Out-of-order reading (writing) of registers can be permitted as long as all the anti (out-

put) dependences are enforced.

The dynamic form of register recycling occurs when a loop of instructions is repeatedly exe-
cuted. With an aggressive superscalar machine capable of supporting many instructions in flight
and a relatively small loop body being executed, multiple iterations of the loop can be simulta-
neously in flight in a machine. Hence, multiple copies of a register defining instruction from the
multiple iterations can be simultaneously present in the machine, inducing the dynamic form of
register recycling. Consequently anti and output dependences can be induced among these
dynamic instructions from the multiple iterations of a loop, and must be detected and enforced to
ensure semantic correctness of program execution.

One way to enforce anti and output dependences is to simply stall the dependent instruction until
the leading instruction has finished accessing the dependent register. If an anti (WAR) depen-
dence exists between a pair of instructions, the trailing instruction (register updating instruction)
must be stalled until the leading instruction has read the dependent register. If an output (WAW)
dependence exists between a pair of instructions, the trailing instruction (register updating
instruction) must be stalled until the leading instruction has first updated the register. Such stall-
ing of anti and output dependent instructions can lead to significant performance lost and is not
necessary. Recall that such false data dependences are induced by the recycling of the architected
registers and are not intrinsic to the program semantics.

Register Renaming Techniques

A more aggressive way to deal with false data dependences is to dynamically assign different
“names” to the multiple definitions of an architected register, and as a result eliminate the pres-
ence of such false dependences. This is called register renaming and requires the use of hardware
mechanism at run-time to undo the effects of register recycling by reproducing the one-to-one

3.2.2 Register Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cMmu

correspondence between registers and values for all the instructions that might be simultaneously
in flight. By performing register renaming, single-assignment is effectively recovered for the
instructions that are in flight, and no anti and output dependences can exist among these instruc-
tions. This will allow the instructions that originally had false dependences between them to be

executed in parallel.

A common way to implement register renaming is to use a separate rename register file (RRF) in
addition to the architected register file (ARF). A straight forward way to implement the RRF is to
simply duplicate the ARF and use the RRF as a shadow version of the ARE. This will allow each
architected register to be renamed once. However this is not a very efficient way to use the regis-
ters in the RRF. Most current designs implement an RRF with fewer entries (such as eight instead
of 32) than the ARF and allow each of the registers in the RRF to be flexibly used to rename any
one of the architected registers. This facilitates the efficient use of the rename registers, but does
require a mapping table to store the pointers to the entries in the RRF. The use of a separate RRF
in conjunction with 2 mapping table to perform renaming of the ARF is illustrated in Figure 35.

FIGURE 35

(a)

(b)

Register
specifier

Register
specifier

Rename register file (RRF) implementations: (a) stand alone; (b} attached to the reorder buffer.

ARF Map Table
Data B T:
11153 ag RRF
|__Data alid
1
Operand
ARF Map Table
Data us Tag
1 p——
= E
s i
5|8 >3
e o
> -
Reorder Buffer

3.2.2 Register Data Flow Techniques Printed: 6/22/00 3-59

CHAPTER 3 Superscalar Processors J.P. Shen

When a separate RRF is used for register renaming, there are implementation choices in terms of
where to place the RRF. One option is to implement a separate stand-alone structure similar to
the ARF and perhaps adjacent to the ARF. This is shown in Figure 35a. An alternative is to incor-
porate the RRF as part of the reorder buffer, as shown in Figure 35b. In both options a busy field
is added to the ARF along with a mapping table. If the busy bit of a selected entry of the ARF is
set, indicating the architected register has been renamed, the corresponding entry of the map
table is accessed to obtain the tag or the pointer to an RRF entry. In the former option, the tag
specifies a rename register and is used to index into the RRF; whereas in the latter option, the tag
specifies a reorder buffer entry and is used to index into the reorder buffer.

Based on the diagrams in Figure 35, the difference between the two options may seem artificial;
however, there are important subtle differences. If the RRF is incorporated as part of the reorder
buffer, every entry of the reorder buffer contains an additional field that functions as a rename
register and hence there is a rename register allocated for every instruction in flight. This is a
design based on worst case scenario and may be wasteful since not every instruction defines a
register. For example branch instructions do not update any architected register. On the other
hand, a reorder buffer already contains ports to received data from the functional units and to
update the ARF at instruction completion time. When a separate stand-alone RRF is used, it
introduces an additional structure that requires ports for receiving data from the functional units
and for updating the ARF. The choice of which of the two options to implement involves design
trade-offs, and both options have been employed in real designs. We now focus on the stand-
alone option to get a better feel of how register renaming actually works.

Register renaming involves three tasks: 1) source read; 2) destination allocate; and 3) register
update. The first task of source read typically occurs during the decode (or possibly dispatch)
stage and is for the purpose of fetching the register operands. When an instruction is decoded, its
source register specifiers are used to index into a multi-ported ARF in order to fetch the register
operands. Three possibilities can occur for each register operand fetch. First, if the busy bit is not
set, indicating there is no pending write to the specified register and that the architected register
contains the specified operand, the operand is fetched from the ARF. If the busy bit is set, indicat-
ing there is a pending write to that register and that the content of the architected register is stale,
the corresponding entry of the map table is accessed to retrieve the rename tag. This rename tag
specifies a rename register and is used to index into the RRF. Two possibilities can occur when
indexing into the RRF. If the valid bit of the indexed entry is set, it indicates that the register-
updating instruction has already finished execution although it is still waiting to be completed. In
this case, the source operand is available in the rename register and is retrieved from the indexed
RREF entry. If the valid bit is not set, it indicates that the register-updating instruction still has not
been executed and that the rename register has a pending update. In this case the tag, or the
rename register specifier, from the map table is forwarded to the reservation station instead of the
source operand. This tag will be used later by the reservation station to obtain the operand when
it becomes available. These three possibilities for source read are shown in Figure 36.

3-s:p

3.2.2 Register Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN CMU

FIGURE 36

Register
specifier

Register renaming tasks: source read, destination allocate, and register update.

Update at instruction completion Update at instruction finish
;ARF Map Table
~ Data Bus Tag RRF
Data alid[Busy]

S |
Y Y

/8 From
- .
functional
units
Operand read

The task of destination allocate also occurs during the decode (or possibly dispatch) stage and
has three subtasks, namely set busy bit, assign tag, and update map table. When an instruction is
decoded, its destination register specifier is used to index into the ARF. The selected architected
register now has a pending write and its busy bit must be set. The specified destination register
must be mapped to a rename register. A particular unused (indicated by the busy bit) rename reg-
ister must be selected. The busy bit of the selected RRF entry must be set, and the index of the
selected RRF entry is used as a tag. This tag must then be written into the corresponding entry in
the map table, to be used by subsequent dependent instructions for fetching their source oper-
ands.

While the task of register update takes place in the backend of the machine and is not part of the
actual renaming activity of the decode/dispatch stage, it does have direct impact on the operation
of the RRF. Register update can occur in two separate steps; see Figure 36. When a register-
updating instruction finishes execution, its result is written into the entry of the RRF indicated by
the tag. Later on when this instruction is completed, its result is then copied from the RRF into
the ARF. Hence, register update involves first updating an entry in the RRF and then an entry in
the ARF. These two steps can occur in back to back cycles if the register-updating instruction is
at the head of the reorder buffer, or can be separated by many cycles if there are other unfinished
instructions in the reorder buffer ahead of this instruction. Once a rename register is copied to its
corresponding architected register, its busy bit is reset and it can be used again to rename another
architected register.

3.2.2 Register Data Flow Techniques Printed: 6/22/00 3-61

CHAPTER 3 Superscalar Processors J.P. Shen

So far we have assumed that register renaming implementation requires the use of two separate
physical register files, namely the ARF and the RRF. This is not necessary. The architected regis-
ters and the rename registers can be pooled together and implemented as a single physical regis-
ter file with its number of entries equal to the sum of the ARF and RRF entry counts. Such a
pooled register file does not rigidly designate some of the registers as architected registers and
others as rename registers. Each physical register can be flexibly assigned to be an architected
register or a rename register. Unlike a separate ARF and RRF implementation which must physi-
cally copy a result from the RRF to the ARF at instruction completion, the pooled register file
only needs to change the designation of a register from being a rename register to an architected
register. This will save the data transfer interconnect between the RRF and the ARF. The key dis-
advantage of the pooled register file is its hardware complexity. A secondary disadvantage is that
at context swap time, when the machine state must be saved, the subset of registers constituting
the architected state of the machine must be explicitly identified first before state saving can

begin.

The pooled register file approach is used in the floating-point unit of the original IBM RS/6000
design and is illustrated in Figure 37. In this design, 40 physical registers are implemented for
supporting an ISA that specifies 32 architected registers. A mapping table is implemented, based
on whose content any subset of 32 of the 40 physical registers can be designated as the archi-
tected registers. The mapping table contains 32 entries indexed by the 5-bit architected register
specifier. Each entry when indexed returns a 6-bit specifier indicating the physical register to
which the architected register has been mapped.

Floating-point unit (FPU) register renaming in the IBM RS/6000{).

F‘GURE 37
OP T S1S2S83 OP T S1 82 S3
| FAD FAD 1

3|]211 3|2
VVVYV VV VY head Free List tail

<+—32|33|34 35|36 37|38}39
M;;)t(a: e PendingTarget Return Queue
>
head
release
tail

The FPU of the RS/6000 is a pipelined functional unit with the Rename pipe stage preceding the
Decode pipe stage. The Rename pipe stage contains the map table, two circular queues, and the

3.2.2 Register Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cMmu

associated control logic. The first queue is called the Free List (FL) and contain physical registers
that are available for new renaming. The second queue is called the Pending Target Return Queue
(PTRQ) and contains those physical registers that have been used to rename architected registers
that have been subsequently re-renamed in the map table. Physical registers in the PTRQ can be
returned to the FL once last use of that register has occurred. Two instructions can traverse the
Rename stage in every machine cycle. Due to the possibility of FMA (Fused Multiply-Add)
instructions that have three sources and one destination, each of the two instructions can contain
up to four register specifiers. Hence, the map table must be 8-ported to support the simultaneous
translation of the eight architected register specifiers. The map table is initialized with the iden-
tity mapping, i.e. architected register i is mapped to physical register i for i=0, 1, ..., 31. At initial-
ization, physical registers 32-39 are placed in the FL and the PTRQ is empty.

When an instruction traverses the Rename stage, its architected register specifiers are used to
index into the map table to obtain their translated physical register specifiers. The 8-ported map
table has 32 entries, indexed by the 5-bit architected register specifier, with each entry containing
6 bits indicating the physical register to which the architected register is mapped. The content of
the map table represents the latest mapping of architected registers to physical registers and spec-
ifies the subset of physical registers that currently represents the architected registers.

In the FPU of the RS/6000, only load instructions can trigger a new renaming. Such register
renaming prevents the FPU from stalling while waiting for loads to execute in order to enforce
anti and output dependences. When a load instruction traverses the Rename stage, its destination

“register specifier is used to index into the map table. The current content of that entry of the map
table is push out to the PTRQ and the next physical register in the FL is loaded into the map table.
This effectively renames the redefinition of that destination register to a different physical regis-
ter. All subsequent instructions that specifies this architected register as a source operand will
received the new physical register specifier as the source register. Beyond the Rename stage, i.e.
in the Decode and Execute stages, the FPU uses only physical register specifiers, and all true reg-
ister dependences are enforced using the physical register specifiers. ’

The map table approach represents the most aggressive and versatile implementation of register
renaming. Every physical register can be used to represent any redefinition of any architected
register. There is significant hardware complexity required to implement the multi-ported map
table and the logic to control the two circular queues. The return of a register in PTRQ to FL is
especially troublesome due to the difficulty in identifying the last-use instruction of a register.
However, unlike approaches based on the use of rename buffers, at instruction completion time
no copying of the content of the rename buffers to the architected registers is necessary. On the
other hand, when interrupts occur and as part of context swap the subset of physical registers that
constitute the current architected machine state must be explicitly determined based on the map
table contents.

Most contemporary superscalar microprocessors implement some form of register renaming to
avoid having to stall for anti and output register data dependences induced by the reuse of regis-

3.2.2 Register Data Flow Techniques Printed: 6/22/00 3-63

CHAPTER 3 Superscalar Processors J.P. Shen

ters. Typically register renaming occurs during the instruction decoding time and its implementa-
tion can become quite complex, especially for wide superscalar machines in which many register
specifiers for multiple instructions must be simultaneously renamed. It’s possible that multiple
redefinitions of a register can occur within a fetch group. Implementing register renaming mech-
anism for wide superscalars without seriously impacting machine cycle time is a real challenge.
To achieve high performance the serialization constraints imposed by false register data depen-
dences must be eliminated; hence dynamic register renaming is absolutely essential.

3.2.2.3 True Data Dependences and the Data-Flow Limit
A read-after-write (RAW) dependence between two instructions is called a true data dependence
due to the producer-consumer relationship between these two instructions. The trailing consumer
instruction cannot obtain its source operand until the leading producer instruction produces its
result. A true data dependence imposes a serialization constraint between the two dependent
instructions; the leading instruction must finish execution before the trailing instruction can
begin execution. Such true data dependences result from the semantics of the program and are
usually represented by a data-flow graph (DFG) or data-dependence graph (DDG).

FIGURE 38 FFT code fragment: (a) original source statements; (b) compiled assembly instructions.

wli+k]ip = z[i].rp + z[m+i].rp:
wli+jlp = clk+1 Lrp* (zlilrp -zjm+iJap) - e[k+1].ip *(z[i].ip - z[m+i].ip);

(a)

il: Ls £2,4(r2)
i2: Ls fO, 4(r5)
i3: fadd.s f0, 2, fO
14: 5.5 {0, 4(16)
i15: 1.5 f14, 8(r7)
16: 1.8 16. O0(r2)
i7: 1.8 15, 00r3)
1&: fsub.s 5, (6, (5
19: fmul.s (4, f14. 15
110: L.s f15. 12(r7)
ill: Ls 7, 4(12)
i12: Ls 8. 4(r3)
| 113: fsub.s {8, {7, {8
| il14: fmul.s f8, 15, f8
: i15: fsub.s f8, f4, f8
i16: s.s f8, O(r8)

(b)

3-(54 3.2.2 Register Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN CMuU

Figure 38 illustrates a code fragment for an FFT implementation. Two source-level statements
are compiled into 16 assembly instructions, including load and store instructions. The floating-
point array variables are stored in memory and must be first loaded before operations can be per-
formed. After the computation the results are stored back out to memory. Integer registers are
used to hold addresses of arrays. Floating point registers are used to hold temporary data. The
DFG induced by the writing and reading of floating-point registers by the 16 instructions of
Figure 38b is shown in Figure 39.

Each node in Figure 39 represents an instruction in Figure 38b. A directed edge exists between
two instructions if there exists a true data dependence between the two instructions. A dependent
register can be identified for each of the dependence edges in the DFG. A latency can also be
associated with each dependence edge. In Figure 39, each edge is labeled with the execution
latency of the producer instruction. In this example, load, store, addition and subtraction instruc-
tions are assumed to have 2-cycle execution latency, while multiplication instructions require 4

cycles.

FIGURE 39

Data-flow graph (DFG) of the code fragment in Figure 38b.

The latencies associated with dependence edges are cumulative. The longest dependence chain,
measured in terms of total cumulative latency, is identified as the critical path of a DFG. Even
assuming unlimited machine resources, a code fragment cannot be executed any faster than the

3.2.2 Register Data Flow Techniques Printed: 6/22/00 3-65

CHAPTER 3 Superscalar Processors J.P. Shen

length of its critical path. This is commonly referred to as the dara-flow limit to program execu-
tion and represents the best performance that can possibly be achieved. For the code fragment of
Figure 39 the data-flow limit is 12 cycles. The data-flow limit is dictated by the true data depen-
dences in the program. Traditionally, the data-flow execution model stipulates that every instruc-
tion in a program begins execution immediately in the cycle following when all its operands
become available. In effect, all existing register data-flow techniques are attempts to approach

the data-flow limit.

3.2.2.4 The Classic Tomasulo’s Algorithm

The design of the IBM 360/91’s floating-point unit, incorporating what has come to be known as
the “Tomasulo’s algorithm,” laid the ground work for modern superscalar processor designs. Key
attributes of most current register data-flow techniques can be found in the classic Tomasulo’s
algorithm, which deserves an in-depth examination. We first introduce the original design of the
floating-point unit (FPU) of the IBM 360, then describe in detail the modified design of the FPU
in the IBM 360/91 that incorporated the Tomasulo’s algorithm, and then illustrate its operation
and effectiveness in processing an example code sequence.

The original design of the IBM 360 Floating-Point Unit (FPU) is shown in Figure 40. The FPU
contains two functional units: one floating-point add unit and one floating-point multiply/divide
unit. There are three register files in the FPU: the floating-point registers (FLR), the floating-
point buffers (FLB), and the store data buffers (SDB). There are four FLR registers; these are the
architected floating-point registers. Floating-point instructions with storage-register or storage-
storage addressing modes are preprocessed. Address generation and memory accessing are per-
formed outside of the FPU. When the data is retrieved from the memory it is loaded into one of
the six FLB registers. Similarly if the destination of an instruction is a memory location, the
result to be stored is placed in one of the three SDB registers and a separate unit accesses the
SDB to complete the storing of the result to a memory location. Using these two additional regis-
ter files, i.e. FLB and SDB, to support storage-register and storage-storage instructions, the FPU
effectively functions as a register-register machine.

In the IBM 360, the Instruction Unit (IU) decodes all the instructions and passes all floating-
point instructions (in order) to the floating-point operation stack (FLOS). In the FPU, floating-
point instructions are then further decoded and issued in order from the FLOS to the two func-
tional units. The two functional units are not pipelined and incur multiple-cycle latencies. The
adder incurs two cycles for add instructions, while the multiply/divide unit incurs three cycles
and 12 cycles for performing multiply and divide instructions, respectively.

3@-66

3.2.2 Register Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cMu

FIGURE 40 The original design of the IBM 360 floating-point unit (FPU).
Storage Bus Instrt{ ;:tion Unit
v
6 Floating |
5] Control Operand B .2
ffloating Point4 Stack
Buffers (FLB)3 (FLOS) Floating Point 4
2
1
——F | =
L—"Dmiezl“
i i w— Floating Point
Floatmgalz%ue'n: H% i stlgr
(FLB) Bus (FLR) Bus
Buffers (SDB)1
]
[] To Storage
5. Sink:: |- Sotiro
Multiply/Divid
Result
Result Bus

In the mid 1960’s, IBM began developing what eventually became Model 91 of the Systems 360
family. One of the goals was to achieve concurrent execution of multiple floating-point instruc-
tions and to sustain a throughput of one instruction per cycle in the instruction pipeline. This is
quite aggressive considering the complex addressing modes of the 360 ISA and the multi-cycle
latencies of the execution units. The end result is a modified FPU in the 360/91 that incorporated
the Tomasulo’s algorithm; see Figure 41.

Tomasulo’s algorithm consists of adding three new mechanisms to the original FPU design,
namely reservation stations, the common data bus, and register tags. In the original design, each
functional unit has a single buffer on its input side to hold the instruction currently being exe-
cuted. If a functional unit is busy, issuing of instructions by FLOS will stall whenever the next
instruction to be issued requires the same functional unit. To alleviate this structural bottleneck,
multiple buffers, called reservation stations, are attached to the input side of each functional unit.
The adder unit has three reservations stations, while the multiply/divide unit has two. These res-

3.2.2 Register Data Flow Techniques Printed: 6/22/00 3-67

CHAPTER 3 Superscalar Processors J.P. Shen

ervation stations are viewed as virtual functional units; as long as there is a free reservation sta-
tion, the FLOS can issue an instruction to that functional unit even if it is currently busy
executing another instruction. Since FLOS issues instructions in order, this will prevent unneces-
sary stalling due to unfortunate ordering of different floating-point instruction types.

FIGURE 41

Floating Point
Butfers (FLB) ¥

The modified design of the IBM 360/91 floating-point unit (FPU) with Tomasulo’s algorithm.

Storage Bus Instryction Unit

Floating

Point 1 ¥

Dperand 8
Contr Stack Busy 180 4] Floating Point

(FLOS) Bits| | Registers (FLR)

6

5|

7.

3

2

1 0
s ' a2 g L Y d J'

{

ﬁt—l—-» ecode]<-;-j 1

ag

Contr

3
2
1

tore
ﬁE-B-”" Data
(e Buffers (SDB)

Ta SourcK:tr .

Common Data Bus (CDB)

With the availability of reservation stations, instructions can also be issued to the functional units
by FLOS even though not all of their operands are yet available. These instructions can wait in
the reservation station for their operands and only begin execution when they become available.
The common data bus (CDB) connects the outputs of the two functional units to the reservation
stations as well as the FLR and SDB registers. Results produced by the functional units are
broadcast unto the CDB. Those instructions in the reservation stations needing the results as their
operands will latch in the data from the CDB. Those registers in the FLR and SDB that are the

368

3.2.2 Register Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN CcMmu

destinations of these results also latch in the same data from the CDB. The CDB facilitates the
forwarding of results directly from producer instructions to consumer instructions waiting in the
reservation stations without having to go through the registers. Destination registers are updated
simultaneously with the forwarding of results to dependent instructions. If an operand is coming
from a memory location, it will be loaded into a FLB register once memory accessing is per-
formed. Hence, the FLB can aiso output onto the CDB, allowing an waiting instruction in a reser-
vation station to latch in its operand. Consequently, the two functional units and the FLB can
drive data onto the CDB, and the reservation stations, FLR and SDB can latch in data from the

CDB.

When the FLOS is dispatching an instruction to a functional unit, it allocates a reservation station
and checks to see if the needed operands are available. If an operand is available in the FLR, then
the content of that register in the FLR is copied to the reservation station, otherwise a tag is cop-
ied to the reservation station instead. The tag indicates where the pending operand is going to
come from. The pending operand can come from a producer instruction currently resident in one
of the five reservation stations, or it can come from one of the six FLB registers. In order to
uniquely identify one of these eleven possible sources for a pending operand, a 4-bit tag is
required. If one of the two operand fields of a reservation station contains a tag instead of the
actual operand, it indicates that this instruction is waiting for a pending operand. When that pend-
ing operand becomes available, the producer of that operand drives the tag along with the actual
operand onto the CDB.

FIGURE 42 The use of tag fields in: (a) a reservation station; (b) a FLR register; and (c) a SDB register.
First operand Second operand
Reservation pgiis] . = - »
station i SINK SOURCE
(@
FLR
register
SDB DATA
register

A waiting instruction in a reservation station uses its tag to monitor the CDB. When it detects a
tag match on the CDB, it then latches in the associated operand. Essentially the producer of an

3.2.2 Register Data Flow Techniques Printed: 6/22/00 3-69

CHAPTER 3 Superscalar Processors J.P. Shen

operand broadcasts the tag and the operand on the CDB, all consumers of that operand monitors
the CDB for that tag and when the broadcasted tag matches their tag, they then latch in the asso-
ciated operand from the CDB. Hence, all possible destinations of pending operands must carry a
tag field and must monitor the CDB for a tag match. Each reservation station contains two oper-
and fields, each of which must carry a tag field since each of the two operands can be pending.
The four registers in the FLR and the three registers in the SDB must also carry tag fields. This is
a total of 17 tag fields representing 17 places that can monitor and receive operands; see

Figure 42. The tag field at each potential consumer site is used in an associative fashion to moni-
tor for possible matching of its content with the tag value being broadcasted on the CDB. When a
tag match occurs, the consumer latches in the broadcasted operand.

The IBM 360 floating-point instructions use a two-address instruction format. Two source oper-
ands can be specified. The first operand specifier is called the “sink” because it also doubles as
the destination specifier. The second operand specifier is called the “source.” Each reservation
station has two operand fields, one for the sink and the other for the source. Each operand field is
accompanied by a tag field. If an operand field contains real data, then its tag field is set to zero.
Otherwise, its tag field identifies the source where the pending operand will be coming from, and
is used to monitor the CBD for the availability of the pending operand. Whenever an instruction
is dispatched by FLOS to a reservation station, the data in the FLR register corresponding to the
sink operand is retrieved and copied to the reservation station. At the same time, the “busy” bit
associated with this FLR register is set, indicating that there is a pending update of that register,
and the tag value that identifies the particular reservation station to which the instruction is being
dispatched is written into the tag field of the same FLR register. This clearly indicates which of
the reservation station will eventually produce the updated data for this FLR register. Subse-
quently if a trailing instruction specifies this register as one of its source operands, when it is dis-
patched to a reservation station, only the tag field (called the “pseudo operand™) will be copied to
the corresponding tag field in the reservation station and not the actual data. When the busy bit is
set it indicates the data in the FLR register is stale and the tag represents the source from which
the real data will come from. Other than reservation stations and FLR registers, SDB registers
can also be destinations of pending operands and hence also require a tag field for each of the

three SDB registers.

We now use an example sequence of instructions to illustrate the operation of the Tomasulo’s
algorithm. We deviate from the actual IBM 360/91 design in several ways to help make the
example more clear. First, instead of the 2-address format of the IBM 360 instructions, we will
use 3-address instructions to avoid potential confusion. The example sequence contains only reg-
ister-register instructions. To reduce the number of machine cycles we have to trace, we will
allow the FLOS to dispatch (in program order) up to two instructions in every cycle. We also
assume that an instruction can begin execution in the same cycle that it is dispatched to a reserva-
tion station. We keep the same latencies of 2 cycles and 3 cycles for add and multiply instruc-
tions, respectively. However, we allow an instruction to forward its result to dependent
instructions during its last execution cycle, and a dependent instruction can begin execution in
the next cycle. The tag values of 1, 2 and 3 are used to identify the three reservation stations of

3.2.2 Register Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN CMU

the adder functional unit, while 4 and 5 are used to identify the two reservation stations of the
multiply/divide functional unit. These tag values are called the “ID’s” of the reservation stations.
The example sequence consists of the following four register-register instructions.

w: R4 <--RO+R8
x: R2<-RO*R4
y: R4 <--R4+R8
z: R8<--R4*R2
FIGURE 43 lHustration of Tomasulo's algorithm on an example instruction sequence. (Part 1)

CYCLE #1 Dispatched instruction(s): W, X (in order)

RS Sink Tag Source RS Sink Tag_Source FLR Tag Data
w1 J:(a) 60 10|78 X410, 60 [1]---- 0 S 6.0
2 5 2lyes|4 | 3.5
3 Mult/Div 4iyes|1 ! 100
w| Adder 8 18
CYCLE #2 Dispatched instruction(s): Y, z (in order)
RSIa Sink Tag Source RSTag Si Source FLR vTag Data
wi(0[60 10[7.8]| x4[0]60 1])
y2 (1] -]0]78 | z5(2] - #4{--— 2fyes[4 | 35
AN I/Div alyes[Z 1 10,0
W Adder_ | — 8lyed 51 78
CYCLE #3 Dispatched instruction(s):
RS Tup Sink Tag Source RSTag Sink Tae Source ' “RByciTac
1 X410] 6.0 10]13.8 0 6.0
y21(0[138 |0l 7.8 z2512] - (4]- 2iyes|4 | 35
3 x| Mult/Div 4 |yes 2 10.0
y| Adder 8lves|5 | 78

Figure 43 illustrates the first three cycles of execution. In Cycle #1, instructions w and x are dis-
patched (in order) to reservation stations 1 and 4. The destination registers of instructions w and
x are R4 and R2 (i.e. FLR registers 4 and 2), respectively. The busy bit of these two registers are

3.2.2 Register Data Flow Techniques Printed: 6/22/00 3-71

CHAPTER 3 Superscalar Processors J.P. Shen

set. Since instruction w is dispatched to reservation station 1, the tag value of | is entered into the
tag field of R4 indicating that the instruction in reservation station 1 will produce the result for
updating R4. Stmilarly the tag value of 4 is entered into the tag field of R2. Both source operands
of instruction w are available so it begins execution immediately. Instruction x requires the result
(R4) of instruction w for its second (*source”) operand. Hence when instruction x is dispatched
to reservation station 4, the tag field of the second operand is written the tag value of | indicating
that the instruction in reservation station 1 will produce the needed operand.

During Cycle #2, instructions y and z are dispatched (in order) to reservation stations 2 and 5,
respectively. Because it needs the result of instruction w for its first operand, instruction y when
it is dispatched to reservation station 2 receives the tag value of 1 in the tag field of the first oper-
and. Similarly instruction z, dispatched to reservation station 5, receives the tag values of 2 and 4
in its two tag fields, indicating that reservation stations 2 and 4 will eventually produce the two
operands it needs. Since R4 is the destination of instruction y, the tag field of R4 is updated with
the new tag value of 2, indicating reservation station 2 (i.e. instruction y) is now responsible for
the pending update of R4. The busy bit of R4 remains set. The busy bit of R8 is set when instruc-
tion z is dispatched to reservation station 5, and the tag field of R8 is set to 5. At the end of Cycle
#2, instruction w finishes execution and broadcasts its ID (reservation station 1) and its result
onto the CDB. All the tag fields containing the tag value of 1 will trigger a tag match and latches
in the broadcasted result. The first tag field of reservation stations 2 (holding instruction y) and
the second tag field of reservation station 4 (holding instruction x) have such tag matches. Hence
the result of instruction w is forwarded to dependent instructions x and y.

In Cycle #3, instruction y begins execution in the adder unit and instruction x begins execution in
the multiply/divide unit. Instruction y finishes execution in Cycle #4 (see Figure 44) and broad-
casts its result on the CDB along with the tag value of 2 (its reservation station ID). The first tag
field in reservation station S (holding instruction z) and the tag field of R4 have tag matches and
pull in the result of instruction y. Instruction x finishes execution in Cycle #5 and broadcasts its
result on the CDB along with the tag value of 4. The second tag field in reservation station 5
(holding instruction z) and the tag field of R2 have tag matches and pull in the result of instruc-
tion x. In Cycle #6, instruction z begins execution and finishes in Cycle #8.

Figure 45a illustrates the data dependence graph of the above example sequence of four instruc-
tions. The four solid arcs represent the four true data dependences, while the other three arcs rep-
resent the anti and output dependences. Instructions are dispatched in program order. Anti-
dependences are resolved by copying an operand at dispatch time to the reservation station.
Hence, it is not possible for a trailing instruction to overwrite a register before an earlier instruc-
tion has a chance to read that register. If the operand is still pending the dispatched instruction
will receive the tag for that operand. When that operand becomes available, the instruction will
receive that operand via a tag match in its reservation station.

3-72

3.2.2 Register Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cMu

FIGURE 44 llustration of Tomasulo's algorithm on an example instruction sequence. (Part 2)

CYCLE #4 Dispatched instruction(s):

RS Tae Sink Tag Source RSTag Sink Tae Source FLR usvTae Data
1 X4(0; 60 (0138 0 6.0
y2i0]13.8 |{0] 7.8 25(2] === [4]-— 2(yes|4 | 35
3 x| Mult/Div 4 %ﬂ 21 100
y| Adder ~ 1985 | 7.8
CYCLE #5 Dispatched instruction(s):
RSIa Sink_Tag Source RSTag Sipk Tag Source FLR y Data
1 x4[0] 60 0]13.8] of"es-baz
2 250 21.6 i4.]--- 2|yesld | 3.5
3 x| Mult/iv 216
Adder 8 |yes| 5 7.8
CYCLE #6 Dispatched instruction(s):
RS Ta¢ Sink Tae Source RSTag Sink Tag Source FLR usvTase
; > 0] 21.6 [0]82.8) 8
2 z5 : : 2 82.8
3 z| Mult/Div l 4 216
Adder 8lvesi5 | 7.8

As an instruction is dispatched, the tag field of its destination register is written with the reserva-
tion station ID of that instruction. When a subsequent instruction with the same destination regis-
ter is dispatched, the same tag field will be updated with the reservation station ID of this new
instruction. The tag field of a register always contains the reservation station ID of the latest
updating instruction. If there are multiple instructions in flight that have the same destination reg-
ister, only the latest instruction will be able to update that register. Output dependences are
implicitly resolved by making it impossible for an earlier instruction to update an register after a
later instruction has updated the same register. This does introduce the problem of not being able
to support precise exception since the register file does not necessarily evolve through all of its
sequential states, i.e. a register can potentially miss an intermediate update. For example in
Figure 43, at the end of Cycle #2 instruction w should have updated its destination register R4.
However, instruction y has the same destination register and when it was dispatched earlier in

3.2.2 Register Data Flow Techniques Printed: 6/22/00 3-73

CHAPTER 3 Superscalar Processors J.P. Shen

that cycle, the tag field of R4 was changed from 1 to 2 anticipating the update of R4 by instruc-
tion y. At the end of Cycle #2 when instruction w broadcasts its tag value of 1, the tag field of R4
fails to trigger a tag match and does not pull in the result of instruction w. Eventually R4 will be
updated by instruction y. However, if an exception is triggered by instruction x, precise exception
will be impossible since the register file does not evolve through all of its sequential states.

FIGURE 45

Data dependence graphs of the example instruction sequence: (a) all data dependences;
(b) true data dependences.

@) Q 2)
(3) waw ° raw
@ (v)

waw

3) (2) 3)

(a) (b)

raw

The Tomasulo’s algorithm resolves anti and output dependences via a form of register renaming.
Each definition of an FLR register triggers the renaming of that register to a register tag. This tag
is taken from the ID of the reservation station containing the instruction that redefines that regis-
ter. This effectively removes false dependences from causing pipeline stalls. Hence the dataflow
limit is strictly determined by the true data dependences. Figure 45b depicts the data dependence
graph involving only true data dependences. As shown in Figure 45a if all four instructions were
required to execute sequentially to enforce all the data dependences, including anti and output
dependences, the total latency required for executing this sequence of instructions will be 10
cycles given the latencies of 2 cycles and 3 cycles for addition and multiplication instructions,
respectively. When only true dependences are considered, Figure 45b reveals that the critical
path is only 8 cycles, i.e. the path involving instructions w, x, and z. Hence the dataflow limit for
this sequence of four instructions is 8 cycles. This limit is achieved by the Tomasulo’s algorithm
as demonstrated in Figure 43 and Figure 44,

374

3.2.2 Register Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN CMU

3.2.2.5 Dynamic Execution Core

Most current state-of-the-art superscalar microprocessors consists of an out-of-order execution
core sandwiched between an in-order front-end, that fetches and dispatches instructions in pro-
gram order, and an in-order back-end, that completes and retires instructions also in program
order. The out-of-order execution core (more recently referred to as the dynamic execution core),
resembling a refinement of Tomasulo’s algorithm, can be viewed as an embedded dataflow
engine that attempts to approach the dataflow limit in instruction execution. The operation of
such a dynamic execution core can be described according to the three phases in the pipeline,
namely instruction dispatching, instruction execution and instruction completion; see Figure 46.

The instruction dispatching phase consists of renaming of destination registers, allocating of res-
ervation station and reorder buffer entries, and advancing instructions from the dispatch buffer to
the reservation stations. For ease of presentation, this subsection assumes that register renaming
is performed in the dispatch stage. All redefinition of architected registers are renamed to rename
registers. Trailing uses of these redefinitions are assigned the corresponding rename register
specifiers. This ensures that all producer-consumer relationships are properly identified and all
false register dependences are removed.

Instructions in the dispatch buffer are then dispatched to the appropriate reservation stations
based on instruction type. Here we assume the use of distributed reservation stations and we use
“reservation station” to refer to the (multi-entry) instruction buffer attached to each functional
unit and “reservation station entry” to refer to one of the entries of this buffer. Simultaneous with
the allocation of reservation station entries for the dispatched instructions is the allocation of
entries in the reorder buffer for the same instructions. Reorder buffer entries are allocated accord-

ing to program order.

Typically, for an instruction to be dispatched there must be the availability of a rename register, a
feservation station entry, and a reorder buffer entry. If any one of these three is not available,
instruction dispatching is stalled. The actual dispatching of instructions from the dispatch buffer
entries to the reservation station entries is via a complex routing network. If the connectivity of
this routing network is less than that of a full crossbar (this is frequently the case in real designs)
then stalling can also occur due to resource contention in the routing network.

The instruction execution phase consists of issuing of ready instructions, executing the issued
instructions, and forwarding of results. Each reservation station is responsible for identifying
instructions that are ready to execute and for scheduling their execution. When an instruction is
first dispatched to a reservation station, it may not have all of its source operands and therefore
must wait in the reservation station. Waiting instructions continually monitor the bus(es) for tag
matches. When a tag match is triggered, indicating the availability of the pending operand, the
result being broadcasted is latched into the reservation station entry. When an instruction in a res-
ervation station entry has all of its operands, it becomes ready for execution and can be issued
into the functional unit. In a given machine cycle if multiple instructions in a reservation station

3.2.2 Register Data Flow Techniques Printed: 6/22/00 3-75

CHAPTER 3 Superscalar Processors

J.P. Shen

are ready, a scheduling algorithm is used (typically oldest first) to pick one of them for issuing
into the functional unit to begin execution. If there is only one functional unit connected to a res-
ervation station (as is the case for distributed reservation stations) then that reservation station

can only issue one instruction per cycle.

FIGURE 46

Dispatch Buffer |

Allocate
Reorder
Buffer
entries

“Dataflow engine” for dynamic execution.

Reg. Write Back

]

Dispatch

Arch. RF |—p»{ Ren. RF

y

Y4 4y

!

l ‘ Reservation

Completion Buffer
(Reorder Buffer)

\
[L 4 * [} Stations
Y
Branch Integer I“"’EEL Float.- Load/
Point Store Forwarding
results to
Res. Sta. &
¢ l rename
Y y registers
] * Managed as a queue;
Maintains sequential order
of all Instructions in flight
Complete (“takeoff’ = dispatching;

'

“landing” = completion)

Once issued into a functional unit, an instruction is executed. Functional units can vary in terms
of their latency. Some have single-cycle latency, others have fixed multiple-cycle latencies. Cer-
tain functional units can require variable number of cycles, depending on the values of the oper-
ands and the operation being performed. Typically, even with function units that require
multiple-cycle latencies, once an instruction begins execution in a pipelined functional unit, there
is no further stalling of that instruction in the middle of the execution pipeline since all data
dependences have been resolved prior to issuing and there shouldn’t be any resource contention.

3.76

3.2.2 Register Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN CMU

3.2.2.6

When an instruction finishes execution it asserts its destination tag (i.e. the specifier of the
rename register assigned for its destination) and the actual result onto a forwarding bus. All
dependent instructions waiting in the reservation stations will trigger a tag match and latch in the
broadcasted result. This is how an instruction forwards its result to other dependent instructions
without requiring the intermediate steps of updating and then reading of the dependent register.
Concurrent with result forwarding, the RRF uses the broadcasted tag as an index and loads the
broadcasted result into the selected entry of the RRF.

Typically a reservation station entry is deallocated when its instruction is issued in order to allow
another trailing instruction to be dispatched into it. Reservation saturation can cause instruction
dispatch to stall. Certain instructions whose execution can induce an exceptional condition that
may require their rescheduling for execution in a future cycle. Frequently, for these instructions,
their reservation station entries are not deallocated until they finish execution without triggering
any exceptions. For example a load instruction can potentially trigger a D-cache miss that may
require many cycles to service. Instead of stalling the functional unit, such an excepting load can
be reissued from the reservation station after the miss has been serviced.

In a dynamic execution core as described above, a producer-consumer relationship is satisfied
without having to wait for the writing and then the reading of the dependent register. The depen-
dent operand is directly forwarded from the producer instruction to the consumer instruction to
minimize the latency incurred due to the true data dependence. Assuming that an instruction can
be issued in the same cycle that it receives its last pending operand via a forwarding bus; if there
is no other instruction contending for the same functional unit, then this instruction should be
able to begin execution in the cycle immediately following the availability of all of its operands.
Hence, if there are adequate resources such that no stalling due to structural dependences occurs,
then the dynamic execution core should be able to approach the dataflow limit.

Reservation Stations and Reorder Buffer

Other than the functional units, the critical components of the dynamic execution core are the
reservation stations and the reorder buffer. The operations of these buffers dictate the function of
the dynamic execution core. This subsection presents the issues associated with the implementa-
tion of the reservation station and the reorder buffer. We present their organization and behavior
with special focus on loading and unloading of an entry of a reservation station and the reorder
buffer. ’

There are three tasks associated with the operation of a reservation station: dispatching, waiting,
and issuing. A typical reservation station is shown in Figure 47b and the various fields in an entry
of a reservation station is illustrated in Figure 47a. Each entry has a busy bit, indicating that the
entry has been allocated, and a ready bit, indicating that the instruction in that entry has all of its
source operands. Dispatching involves loading an instruction from the dispatch buffer into an
entry of the reservation station. Typically the dispatching of an instruction requires the following
three steps: select a free, i.. not busy, reservation station entry, load operands and/or tags into the

3.2.2 Register Data Flow Techniques Printed: 6/22/00 3-77

CHAPTER 3 Superscalar Processors J.P. Shen

selected entry, and set the busy bit of that entry. The selection of a free entry is based on the busy
bits and is performed by the allocate unit. The allocate unit examines all the busy bits and selects
one of the nonbusy entries to be the allocated entry. This can be implemented using a priority
encoder. Once an entry is allocated the operands/tags of the instruction are loaded into the entry.
Each entry has two operand fields, each of which has an associated valid bit. If the operand field
contains the actual operand, then the valid bit is set. If the field contains a tag, indicating a pend-
ing operand, then its valid bit is reset and it must wait for the operand to be forwarded. Once an

entry is allocated, its busy bit must be set.

FIGURE 47

(a)

(b)

Reservation station mechanisms: (a) a reservation station entry; (b) dispatching into and
issuing from a reservation station.

Dispatch Forwarding Dispatch Forwarding

lot B B
Foy ey gy Y
Busy | Operand 1 Valid| Operand 2 Valid[Ready
T Tag { Tag
Match Match
(1 X] i (2 1/ *
Tag Buses ag Buses
Allocate : : Issuing
Unit Dispatching Unit
; | :
Entry Entry
to be to be
allocated issued
Busy eady
Issuing

An instruction with a pending operand, must wait in the reservation station. When a reservation
station entry is waiting for a pending operand, it must continuously monitor the tag bus(es).
When a tag match occurs, the operand field latches in the forwarded result and sets its valid bit.

3-78

3.2.2 Register Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cMu

When both operand fields are valid, the ready bit is set indicating that the instruction has all of its
source operands and ready to be issued.

The issuing step is responsible for selecting a ready instruction in the reservation station and
issues it into the functional unit. All the ready instructions are identified by their ready bits being
set. The selecting of a ready instruction is performed by the issuing unit based on a scheduling
heuristic; see Figure 47b. The heuristic can be based on program order or how long each ready
instruction has been waiting in the reservation station. Typically when an instruction is issued
into the functional unit, its reservation station entry is deallocated by resetting the busy bit.

A large reservation station can be quite complex to implement. On its input side, it must support
many possible sources, including all the dispatch slots and forwarding buses; see Figure 47a. The
data routing network on its input side can be quite complex. During the waiting step, all operand
fields of a reservation station with pending operands must continuously compare its tag against
potentially multiple tag buses. This is comparable to doing associative search across all the reser-
vation station entries involving multiple keys (tag buses). If the number of entries is small, this is
quite feasible. However as the number of entries increases, the complexity increase is quite sig-
nificant. This portion of the hardware is commonly referred to as the “wake up logic” []. When
the entry count increases, it also complicates the issuing unit and the scheduling heuristic in
selecting the best ready instruction to issue.

The reorder buffer contains all the instructions that are “in flight,” i.e. all the instructions that
have been dispatched but not yet completed architecturally. These include all the instructions
waiting in the reservation stations, executing in the functional units, and those that have finished
execution but are waiting to be completed in program order. The status of each instruction in the
reorder buffer can be tracked using several bits in each'entry of the reorder buffer. Each instruc-
tion can be in one of several states, i.e. waiting execution, in execution, and finished execution.
These status bits are updated as an instruction traverses from one state to the next. An additional
bit can also be used to indicate whether an instruction is speculative (in the predicted path) or not.
If speculation can cross multiple branches, additional bits can be employed to identify which
speculative basic block an instruction belongs to. When a branch is resolved a speculative
instruction can become nonspeculative (if the prediction is correct) or invalid (if the prediction is
incorrect). Only finished and nonspeculative instructions can be completed. An instruction
marked invalid is not architecturally completed when exiting the reorder buffer. Figure 48a illus-
trates the fields typically found in a reorder buffer entry; in this figure the rename register field is
also included.

The reorder buffer is managed as a circular queue using a head pointer and a tail pointer; see
Figure 48b. Tail pointer is advanced when reorder buffer entries are allocated at instruction dis-
patch. The number of entries that can be allocated per cycle is limited by the dispatch bandwidth.
Instructions are completed from the head of the queue. From the head of the queue as many
instructions that have finished execution can be completed as the completion bandwidth allows.
The completion bandwidth is determined by the capacity of another routing network. One of the

3.2.2 Register Data Flow Techniques Printed: 6/22/00 3-79

CHAPTER 3 Superscalar Processors J.P. Shen

critical issues is the number of write ports to the architected register file that are needed to sup-
port the transferring of data from the rename registers (or the reorder buffer entries if they are
used as rename registers) to the architected registers. When an instruction is completed, its
rename register as well as its reorder buffer entry are deallocated. The head pointer to the reorder
buffer is also appropriately updated. In a way the reorder buffer can be viewed as the heart or the
central control of the dynamic execution core because the status of all in-flight instructions are
tracked by the reorder buffer.

RIGURE 48

(a)

(b)

3.2.27

(a) Reorder buffer entry; (b) reorder buffer organization.

Busy Issued {Finished | Instruction Address Rename Register Speculative | Valid

Next entry to Next instruction
be allocated to complete
(tail pointer) (head pointer)
B[OJOJOJO JO T1 T |1 111 1
i
F
1A
RR
S
\Y
Reorder Buffer

It is possible to combine the reservation stations and the reorder buffer as one structure, called the
instruction window, that manages all the instructions in flight. Since at dispatch an entry in the
reservation station and an entry in the reorder buffer must be allocated for each instruction, they
can be combined as one entry in the instruction window. Hence, instructions are dispatched into
the instruction window, entries of the instruction window monitor the tag buses for pending oper-
ands, results are forwarded into the instruction window, and instructions are completed from the
instruction window.

Other Register Data-Flow Techniques

For many years the dataflow limit has been assumed to be an absolute theoretical limit and the
ultimate performance goal. Extensive research efforts on dataflow architectures and dataflow
machines have been ongoing for over three decades. The dataflow limit assumes that true data
dependences are absolute and cannot possibly be overcome. Interestingly, in the late 1960’s and

3-80 3.2.2 Register Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN CMU

the early 1970’s similar assumption was made concerning control dependences [,]. It was gen-
erally thought that control dependences are absolute and that when encountering a conditional
branch instruction there is no choice but to wait for that conditional branch to be executed before
proceeding to the next instruction due to the uncertainty of actual control flow. Since then we
have witnessed tremendous strides made in the area of branch prediction techniques. Conditional
branches and associated control dependences are no longer absolute barriers and can frequently
be overcome by speculating on the direction and the target address of the branch [,]. The basis
that made such speculation possible is that frequently the outcome of a branch instruction is quite
predictable. It wasn’t until 1995 that researchers began to also question the absoluteness of true
data dependences.

In 1996 several research papers appeared that proposed the concept of value prediction [, ,].
The first paper focused on predicting load values [] based on the observation that frequently the
values being loaded by a particular static load instruction are quite predictable. The second paper
generalized the same basic idea for predicting the result of ALU instructions []. Experimental
data based on real input data sets indicate that the results produced by many instructions are actu-
ally quite predictable. The notion of “value locality” that indicates that certain instructions tend
to repeatedly produce the same small set (sometimes one) of result values. By tracking the results
produced by these instructions, future values can become predictable based on the historical val-
ues. Since these seminal papers, numerous papers have been published in recent years proposing
various designs of value predictors [, , ,].Inarecent study, it was shown that a hybrid value
predictor can achieve prediction rates of up to 80% [) and a realistic design incorporating value
prediction can achieve IPC improvements in the range of 8.6% to 23% for the SPEC bench-
marks.

When the result of an instruction is correctly predicted via value prediction, typically performed
during the fetch stage, a subsequent dependent instruction can begin execution using this specu-
lative result without having to wait for the actual decoding and execution of the leading instruc-
tion. This effectively removes the serialization constraint imposed by the data dependence
between these two instructions. In a way this particular dependence edge in the data dependence
graph is effectively removed when correct value prediction is performed. Hence, value prediction
provides the potential to exceed the classical dataflow limit. Of course validation s still required
to ensure that the prediction is correct, and becomes the new limit on instruction execution
throughput. Value prediction becomes effective in increasing machine performance if mispredic-
tion rarely occurs and the misprediction penalty is small (e.g. zero or one cycle), and if the vali-
dation latency is less than the average instruction execution latency. Clearly efficient
implementation of value prediction is crucial in ensuring its efficacy in improving performance.

Another recently proposed idea is call dynamic instruction reuse [,]. Similar to the concept of
value locality, it has been observed through experiments with real programs that frequently a
same sequence of instructions is repeatedly executed using the same set of input data. This
results in redundant computation being performed by the machine. Dynamic instruction reuse
techniques attempt to track such redundant computations and when they are detected the previ-

3.2.2 Register Data Flow Techniques Printed: 6/22/00 3-81

CHAPTER 3 Superscalar Processors J.P. Shen

3.2.3

3.2.3.1

ous result is used without performing the redundant computation. These techniques are nonspec-
ulative, hence no validation is required. While value prediction can be viewed as the elimination
of certain dependence edges in the data dependence graph, dynamic instruction reuse techniques
attempt to remove both nodes and edges of a subgraph from the data dependence graph. A much
earlier research effort had shown that such elimination of redundant computations can yield sig-
nificant performance gains for programs written in functional languages []. A more recent
study also yields similar data on the presence of redundant computations in real programs [].
This is an area that is currently being actively researched, new insightful results can be expected.

Memory Data Flow Techniques

Memory instructions are responsible for moving data between the main memory and the register
file, and are essential for supporting the execution of ALU instructions. Register operands
needed by ALU instructions must first be loaded from memory. With limited number of registers,
during the execution of a program not all of the operands can be kept in the register file. The
compiler generates “spill code” to temporarily place certain operands out to the main memory
and to reload them when they are needed. Such spill code are implemented using store and load
instructions. Typically, the compiler only allocates scalar variables into registers. Complex data
structures, such as arrays and linked lists, that far exceed the size of the register file are usually
kept in the main memory. In order to perform operations on such data structures, load and store
instructions are required. The effective processing of load/store instructions can minimize the
overhead of moving data between the main memory and the register file.

The processing of load/store instructions and the resultant memory data flow can become a bot-
tleneck to overall machine performance due to the potential long latency for executing memory
instructions. The long latency of load/store instructions results from the need to compute a mem-
ory address and the need to access a memory location. In order to support virtual memory, the
computed memory address (called the virtual address) also needs to be translated into a physical
address before the physical memory can be accessed. Cache memories are very effective in
reducing the effective latency for accessing the main memory. Furthermore, various techniques
have been developed to reduce the overall latency and increase the overall throughput for pro-
cessing load/store instructions.

Memory Accessing Instructions

The execution of memory data flow instructions occurs in three steps: memory address genera-
tion, memory address translation, and data memory accessing. We first state the basis for these
three steps and then describe the processing of load/store instructions in a superscalar pipeline.

The register file and the main memory are defined by the instruction set architecture for data stor-
age. The main memory as defined in an instruction set architecture is a collection of 2" memory
locations with random access capability, i.e. every memory location is identified by an n-bit

3-82

3.2.3 Memory Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN CcMuU

address and can be directly accessed with the same latency. Just like the architected register file,
the main memory is an architected entity and is visible to the software instructions. However,
unlike the register file, the address that identifies a particular memory location is usually not
explicitly stored as part of the instruction format. Instead, a memory address is usually generated
based on a register and an offset specified in the instruction. Hence address generation is required
and involves the accessing of the specified register and the adding of the offset value.

In addition to address generation, address translation is also required when virtual memory is
implemented in a system. The architected main memory constitutes the virtual address space of
the program and is viewed by each program as its private address space. The physical memory .
that is implemented in a machine constitutes the physical address space, which may be smaller
than the virtual address space and may even be shared by multiple programs. Virtual memory is a
mechanism that maps the virtual address space of a program to the physical address space of the
machine. With such address mapping, virtual memory is able to support the execution of a pro-
gram with a virtual address space that is larger than the physical address space, and the multipro-
gramming paradigm by mapping multiple virtual address spaces to the same physical address
space. This mapping mechanism involves the translation of the computed effective address, i.e.
the virtual address, into a physical address that can be used to access the physical memory. This
mechanism is usually implemented using 2 mapping table, and address translation is performed
via a table lookup.

The third step in processing a load/store instruction is memory accessing. For load instructions
data is read from a memory location and stored into a register, while for store instructions a reg-
ister value is stored into a memory location. While the first two steps of address generation and
address translation are performed in identical fashion for both loads and stores, the third step is
performed differently for loads and stores by a superscalar pipeline.

In Figure 49, we illustrate these three steps as occurring in three pipeline stages. The first pipe
stage performs effective address generation. We assume the typical addressing mode of register
indirect with an offset for both load and store instructions. For a load instruction, soon as the
address register operand is available, it is issued into the pipelined functional unit and the effec-
tive address is generated by the first pipe stage. A store instruction must wait for the availability
of both the address register and the data register operands before it is issued.

After the first pipe stage generates the effective address, the second pipe stage translates this vir-
tual address into a physical address. Typically, this is done by accessing the translation lookaside
buffer (TLB), which is a hardware controlled table containing the mapping of virtual to physical
addresses. The TLB is essentially a cache of the page table which is stored in the main memory.
(Subsection 3.2.3.2 provides more background material on the page table and the TLB.) It is pos-
sible that the virtual address being translated belongs to a page, the mapping of which is not cur-
rently resident in the TLB. This is called a TLB miss. If the particular mapping is present in the
page table, then it can be retrieved by accessing the page table in the main memory. Once the
missing mapping is retrieved and loaded into the TLB, the translation can be completed. It is also

3.2.3 Memory Data Flow Techniques Printed: 6/22/00 3-83

CHAPTER 3 Superscalar Processors J.P. Shen

possible that the mapping is not resident even in the page table, meaning that the particular page
being referenced has not been mapped and is not resident in the main memory. This will induce a
page fault and require accessing disk storage to retrieve the missing page. This constitutes a pro-
gram exception and will necessitate the suspension of the execution of the current program.

FIGURE 49 Processing of load/store instructions.

' Reg. Write Back
Dispatch Buffer [| [1 ']

Dispatch | Arch. RF |- Ren.RF

Y y A y 3

E—L—I [] |] f_[lt]([_[gj Reservation Stations

Y Y Y

Branch| lInteger| [(Integer Float.- Load/ Address Generation

Address Translation

Point Store
Memory Access
Y | A
ReorderBuffer[. T .1 | [..{ .1 4. .1 Data Memory
| Complete
Store Buffer | | .. [ll N
Regire

After successful address translation in the second pipe stage, a load instruction accesses the data
memory during the third pipe stage. At the end of this machine cycle, the data is retrieved from
the data memory and written into either the register rename buffer or the reorder buffer. At this
point the load instruction finishes execution. The updating of the architected register is not per-
formed until when this load instruction is completed from the reorder buffer. Here we assume
that data memory access can be done in one machine cycle in the third pipe stage. This is possi-
ble if a data cache is employed. (Subsection 3.2.3.2 provides more background material on

3-84 3.2.3 Memory Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cmu

3.23.2

caches.) With a data cache, it is possible that the data being loaded is not resident in the data
cache. This will result in a data cache miss and require the filling of the data cache from the main
memory. Such cache misses can necessitate the stalling of the load/store pipeline.

Store instructions are processed some what differently than load instructions. Unlike a load
instruction, a store instruction is considered finished with execution at the end of the second pipe
stage when there is a successful translation of the address. The register data to be stored to mem-
ory is kept in the reorder buffer. At the time when the store is being completed, this data is then
written out to memory. The reason for this delayed access to memory is to prevent the premature
and potentially erroneous update of the memory in case the store instruction may have to be
flushed due to the occurrence of an exception or a branch misprediction. Since load instructions
only read the memory, their flushing will not result in unwanted side effects affecting the mem-

ory state.

For a store instruction, instead of updating the memory at completion, it is also possible to move
the data to the store buffer at completion. The store buffer is a FIFO queue that buffers architec-
turally completed store instructions. Each of these store instructions is then retired, i.e. updates
the memory, when the memory bus is available. The purpose of the store buffer is to allow stores
to be retired when the memory bus is not busy, and thus giving priority to loads that need to
access the memory bus. We use the term completion to refer to the updating of the CPU state and
the term retiring to the updating of the memory state. With the store buffer, a store instruction can
be architecturally complete but not yet retired to memory. When a program exception occurs, the
instructions that follow the excepting instruction and may have finished out of order, must be
flushed from the reorder buffer; however the store buffer must be drained, i.e. the store instruc-
tions in the store buffer must be retired, before the excepting program can be suspended.

We have assumed that both address translation and memory accessing can be done in one

. machine cycle. Such latency usually requires the use of TLBs and caches. A brief review of

cache memory and virtual memory implementation is provided in the next subsection.

Memory Hierarchy Revisited

Before discussing specific memory data flow techniques, we first review the fundamentals of

cache memory and virtual memory from the implementation perspective. Four topics are cov-
ered: memory accessing mechanisms, cache memory implementations, TLB implementations,
and interaction between cache memory and TLB.

There are two fundamental ways to access a multi-entry memory: indexing via an address or
associative search via a tag. An indexed memory uses an address to index into the memory to
select a particular entry; see Figure 50a. A decoder is used to decode the n-bit address in order to
enable one of the 2" entries for reading or writing that entry. There is a rigid mapping of an
address to the data which requires the data to be stored in a fixed entry in the memory. Indexed
memory is rigid in this mapping but less complex to implement. In contrast, an associative mem-

3.2.3 Memory Data Flow Techniques ~ Printed: 6/22/00 3-85

CHAPTER 3 Superscalar Processors J.P. Shen

ory uses a key to search through the memory to select a particular entry; see Figure 50b. Each
entry of the memory has a tag field and a comparator that compares the content of its tag field to
the key. When a match occurs that entry is selected. Using this form of associative search allows
the data to be flexibly stored in any location of the memory. This flexibility comes at the cost of
implementation complexity. A compromise between the indexed memory and the associative
memory is the set associative memory which uses both indexing and associative search; see
Figure 50c. An address is used to index into one of the sets while the multiple entries within a set
are searched with a key to identify one particular entry. This compromise provides some flexibil-
ity in the placement of data without incurring the complexity of a fully associative memory.

FIGURE 50

ress

Memory accessing mechanisms: (a) indexed memory; (b) (fully) associative memory; (c) set

associative memory.

tag data | tag
L 4
v
4

data

decoder
decoder

@) (b))

Memory hierarchy is used to provide an overall memory subsystem with both high capacity and
low latency. The lower level memory is usually larger but slower, and the higher level memory is
smaller but much faster. By leveraging locality of memory references, such a memory hierarchy
can provide performance close to a very large and fast memory without the cost and complexity.
Cache memory constitutes the higher level memory to the lower level main memory.

The main memory is normally implemented as a large indexed memory. However a cache mem-
ory can be implemented using any one of the three memory accessing schemes shown in

Figure 50. When a cache memory is implemented as an indexed memory it is referred to as a
direct-mapped cache (illustrated in). Since the direct-mapped cache is smaller and has fewer
entries than the main memory, it requires fewer address bits and its smaller decoder can only
decode a subset of the main memory address bits. Consequently, many main memory addresses
can be mapped to the same entry in the cache. In order to ensure the selected entry contains the
correct data, the remaining, i.e. not decoded, address bits must be used to identify the selected
entry. Hence in addition the data field, each entry has an additional tag field for storing these
undecoded bits. When an entry of the cache is selected, its tag field is accessed and compared

3486

3.2.3 Memory Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN CcMu

with the undecoded bits of the original address to ensure that the entry contains the data being

addressed.

FIGURE 51

ta

naex

Decoder

Direct mapped caches: (a) single-word per block; (b) multi-word per block.

ta naex

Decoder

EECET S Bk

-

L »Multiplexor~ Tag
Tag match match

(a) L)

Figure 51a illustrates a direct mapped cache with each entry, or block, containing one word. In
order to take advantage of spatial locality, the block size of a cache can contain multiple words as
shown in Figure 51b. With a multi-word block, some of the bits from the original address are
used to select the particular word being referenced. Hence the original address is now partitioned
into three portions: the index bits are used to select an entry; the block offset bits are used to
select a word within a selected block, and the tag bits are used to do tag match against the tag
stored in the tag field of the selected entry.

Cache memory can also be implemented as a fully associative or a set-associative memory as
shown in Figure 52 and Figure 53, respectively. Fully associative caches have the greatest flexi-
bility in terms of the placement of data in the entries of the cache. Other than the block offset bits,
all the other address bits are used as a key for associatively searching all the entries of the cache.
This full associativity facilitates-the most efficient use of all the entries of the cache, but incurs
the greatest implementation complexity. Set associative caches permits the flexible placement of
data among all the entries of a set. The index bits select a particular set, the tag bits select an entry
within the set, and the block offset bits selects the word within the selected entry. The partition-
ing of the original address bits into these three categories is a result of careful trade-offs.

3.2.3 Memory Data Flow Techniques Printed: 6/22/00 3-87

CHAPTER 3 Superscalar Processors J.P. Shen

FIGURE 52 Fully associative cache.

[Ttag~ Plk.offset]

555

P>

Associative

L 2 \ 4
\. Mu]tig]exor / search

FIGURE 53 Set-associative cache.

[tag [index [BOY
|

1
]
]
[]
T _’ [
3 : >
3 Associative
o search
-
1
1
Y

L3> Multiplexor ~

Inherent to virtual memory is the mapping of the virtual address space to the physical address
space. This requires the translation of the virtual address into the physical address. Instead of

3:88 3.2.3 Memory Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cMmu

directly accessing the main memory with the address generated by the processor, the virtual
address generated by the processor must first be translated into a physical address. The physical
address is then used to access the physical main memory as shown in Figure 54.

FIGURE 54 Virtual to physical address translation.
[Virtual'address”] Main memory
Address
> Translation
Physical address
FIGURE 55 Translation of virtual word address to physical word address using a translation memory.
[CViroat adaress)
S
{5}
3 Main memory
3
Q
Yma
g
Translation Physical address |
Memory A

Address translation can be done using a translation memory. The virtual address is used to index
into the translation memory. The data retrieved from the selected éntry of the translation memory
is then used as the physical address to index the main memory. Hence physical addresses that

3.2.3 Memory Data Flow Techniques Printed: 6/22/00 3-89

CHAPTER 3 Superscalar Processors J.P. Shen

correspond to the virtual addresses are stored in the corresponding entries of the translation mem-
ory. Figure 55 illustrates the use of a translation memory to translate word addresses, i.e. it maps
a virtual address of a word in the virtual address space into a physical address of a word in the
physical main memory.

There are two weaknesses to the translation memory scheme shown in Figure 55. First, transla-
tion of word addresses will require a translation memory with the same number of entries as the
main memory. This can result in doubling the size of the physical main memory. Translation can
be done at coarser granularity. Multiple (usually in powers of 2) words in the main memory can
be grouped together into a page, and only addresses to each page need to be translated. Within
the page, words can be selected using the lower order bits of the virtual address, i.e. page offset
bits, directly without requiring translating them. This is illustrated in Figure 56. With a paging
system, the translation memory is called the'page table.

|FIGURE 56

Translation of virtual page address to physical page address using a translation memory.

Virtual address

L

| 1 Page offset

1

Virtual Main memory pages

page
number

)
_ﬂ 8

Decoder

Translation physicaT
memory page

S
3
8
a
(page table) number
_.

The second weakness of the translation memory scheme is the fact that two memory accesses are
required for every main memory reference by an instruction. First the page table must be
accessed to obtain the physical page number, then the physical main memory can be accessed
using the translated physical page number along with the page offset. In actual implementations
the page table is typically stored in the main memory (usually in the portion of main memory
allocated to the operating system), hence every reference to memory by an instruction requires

"23Q

v

3-90

3.2.3 Memory Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cMmu

two sequential accesses to the physical main memory. This can become a serious bottleneck to
performance. The solution is to implement the page table using a fast cache memory.

Translation lookaside buffer (TLB) is essentially a cache memory for the page table. Just like any
other cache memory, the TLB can be implemented using any one of the three memory accessing
schemes of Figure 50. A direct mapped TLB is simply a smaller (and faster) version of the page
table. The virtual page number is partitioned into an index for the TLB and a tag; see Figure 57.
The virtual page number is translated into the physical page number, which is concatenated with
the page offset to form the physical address.

FIGURE 57 Direct mapped TLB.

Virtual address
Virtual page no.| | [T." Page offset

Tag
Index
Page
Physical page no.¢ offset

\ 4
(Physical address)

To ensure more flexible and efficient use of the TLB entries, associativity is usually added to the
TLB implementation. Figure 58 illustrates the set associative and fully associative TLBs. For the
set associative TLB, the virtual address bits are partitioned into three fields: index, tab and page
offset. The size of the page offset field is dictated by the page size which is specified by the archi-
tecture and the operating system. The remaining fields, i.e. index and tag, constitute the virtual
page number. For the fully associative TLB, the index field is missing, and the tag field contains
the virtual page number.

Caching a portion of the page table into the TLB allows fast address translation; however, TLB
misses can occur. All of the virtual page to physical page mappings in the page table cannot be
simultaneously present in the TLB. When accessing the TLB a cache miss can occur, in which
case the TLB must be filled from the page table sitting in the main memory. This can incur a
number of stall cycles in the pipeline. It is also possible that a TLB miss can lead to a page fault.

3.2.3 Memory Data Flow Techniques Printed: 6/22/00 3-91

CHAPTER 3 Superscalar Processors J.P. Shen

A page fault occurs when the virtual page to physical page mapping does not even exist in the
page table. This means that the particular page being referenced is not resident in the main mem-
ory and must be fetched from secondary storage. To service a page fault requires accessing the
disk storage and can require potentially tens of thousands of machine cycles. Hence, when a page
fault is triggered by a program, that program is suspended from execution until the page fault is
serviced by the operating system.

FIGURE 58 Associative TLBs: (a) set associative TLB; (b) fully associative TLB.
Virtual pg. no.
Virtual
PPN fag pageno. [PPN | tag
P>
Page
offset
Page
offset
Phy.pg.no. ¥_ \ 4 Phy. pg. no. f %
(Physicaladdress) (" Physicaladdress)
(a) (b)

A data cache is used to cache a portion of the main memory; a TLB is used to cache a portion of
the page table. The interaction between the TLB and the data cache is illustrated in Figure 59.
Correlating back to the load/store unit pipeline of Figure 49, the n-bit virtual address shown in
Figure 59 is the effective address generated by the first pipe stage. This virtual address consists
of a virtual page number (v bits) and a page offset (g bits). If the TLB is a set associative cache,
the v bits of the virtual page number is further split into a k-bit index and a (v-k)-bit tag. The sec-
ond pipe stage of the load/store unit corresponds to the accessing of the TLB using the virtual
page number. Assuming there is no TLB miss, the TLB will output the physical page number (p
bits), which is then concatenated with the g-bit page offset to produce the m-bit physical address
where m = p+g and not necessarily equal to n. During the third pipe stage the m-bit physical
address is used to access the data cache. The exact interpretation of the m-bit physical address
depends on the design of the data cache. If the data cache block contains multiple words, then the
lower order b bits are used as a block offset to select the referenced word from the selected block.
The selected block is determined by the remaining (m-b) bits. If the data cache is a set associative
cache, then the remaining (m-b) bits are split into an z-bit tag and an i-bit index. The value of i is
determined by the total size of the cache and the set associativity, i.e. there should be i sets in the
set associative data cache. If there is no cache miss, then at the end of the third pipe stage (assum-

3-92

3.2.3 Memory Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN CMuU

ing the data cache can be accessed in a single cycle) the data will be available from the data cache
(assuming a load instruction is being executed).

FIGURE 59 Interaction between the TLB and the data cache.

Virtual Page No. (VPN)

Virtual '
Address Tag ; Index Page Offset (PO)

(n=v+g bits) { v-k {k
¢ TLB) y
v

Physical Phy. Page No. (PPN) PO
Address :
) Tag Index 1 BO BO:
(m=p+g bits) 4t - I k b block offset
i

C D-cache)
v

Data

The organization shown in Figure 59 has a disadvantage because the TLB must be accessed
before the data cache can be accessed. Serializing of the TLB and data cache accesses introduces
an overall latency that is the sum of the two latencies. Hence, the reason for assuming that
address translation and memory access are done in two separate pipe stages in Figure 49. The
solution to this problem is to use a virtually indexed data cache that allows the accessing of the
TLB and the data cache to be performed in parallel. Figure 60 illustrates such a scheme.

A straight-forward way to implement a virtually indexed data cache is to use only the page offset
bits to access the data cache. Since the page offset bits do not require translation, they can be
used without translation. The g bits of the page offset can be used as the block offset (b bits) and
the index (i bits) fields in accessing the data cache. For simplicity, let’s assume that the data
cache is a direct mapped cache of 2’ entries with each entry, or block, containing 25 words.
Instead of storing the remaining bit of the virtual address, i.e. the virtual page number, as its tag
field, the data cache can store the translated physical page number in its tag field. This is done at
the time when a data cache line is filled. At the same time when the page offset bits are being

3.2.3 Memory Data Flow Techniques Printed: 6/22/00 3-93

CHAPTER 3 Superscalar Processors J.P. Shen

used to access the data cache, the remaining bit of the virtual address, i.e. the virtual page num-
ber, are used to access the TLB. Assuming the TLB and data cache access latencies are compara-
ble, at the time when the physical page number from the TLB becomes available, the tag field
(also containing the physical page number) of the data cache will also be available. The two p-bit
physical page numbers can then be compared to determine whether there is a hit in the data cache
or not. With a virtually indexed data cache, address translation and data cache access can be over-

lapped to reduce the overall latency.

FIGURE 60 Virtually indexed data cache.

Virtual Pg. No. (VPN) Virtual Pg. No. (VPN)
Tag | Index Page Offset (PO) Tag Index Page Offset (PO)

I v-k { k g' L Index 1 BO

C s) v
{ P (D-cache)
PPN _-_-_-_-_-_._':_—_-_-___-E { P
// p PPN
P Data
Hit/Miss

3.2.3.3 Ordering of Memory Accesses

A memory data dependence exists between two load/store instructions if they both reference the
same memory location, i.e. there exists an aliasing, or collision, of the two memory addresses. A
load instruction performs a read from a memory location, while a store instruction performs a
write to a memory location. Similar to register data dependences, read-after-write (RAW), write-
after-read (WAR), and write-after-write (WAW) dependences can exist between load and store
instructions. A store (load) instruction followed by a load (store) instruction involving the same
memory location will induce a RAW (WAR) memory data dependence. Two stores to the same
memory location will induce a WAW dependence. These memory data dependences must be
enforced in order to preserve the correct semantics of the program.

One way to enforce memory data dependences is to execute all load/store instructions in program
order. Such total ordering of memory instructions is sufficient for enforcing memory data depen-

3494 3.2.3 Memory Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cMu

dences but not necessary. It is conservative and can impose an unnecessary limitation on the per-
formance of a program. We use the example in Figure 61 to illustrate this point. DAXPY is the
name of a piece of code that multiplies an array by a coefficient and then add the array to another
array. DAXPY (derived from “Double precision A times X Plus Y”) is a kernel in the LINPAC
routines <<??>> and is commonly found in many numerical programs. Notice that all the itera-
tions of this loop are data independent and can be executed in parallel. However, if we impose the
constraint that all load/store instructions must be executed in total order, then the first load
instruction of the second iteration cannot begin until the store instruction of the first iteration is
performed. This constraint will effectively serialize the execution of all the iterations of this loop.

FIGURE 61

The “DAXPY" example [H&P pg. 357)

Y(i) = A * X(i) + Y(i)
LD FO,a
ADDI R4, Rx, #512 ; last address
Loop:
LD F2, 0(Rx) ; load X(i)
MULTD F2, FO, F2 s A*X(1)
LD F4, O(Ry) ; load Y(l)
ADDD F4,F2,F4 s AYX(D) + Y(I)
SD F4, 0(Ry) ; store into Y(i)
ADDI Rx, Rx, #8 ; Inc. index to X
ADDI Ry, Ry, #8 ;inc. indexto Y
suB R20, R4, Rx ; compute bound
BNZ R20, loop ; check if done

By allowing load/store instructions to execute out of order, without violating memory data
dependences, performance gain can be achieved. Take the example of the DAXPY loop. The
graph in Figure 61 represents the true data dependences involving the core instructions of the
loop body. These dependences exist among the instructions of the same iteration of the loop.
There are no data dependences between multiple iterations of the loop. The loop closing branch
instruction is highly predictable; hence the fetching of subsequent iterations can be done very
quickly. The same architected registers specified by instructions from subsequent iterations are
dynamically renamed by register renaming mechanisms; hence there is no register dependences
between the iterations due to the dynamic reuse of the same architected registers. Consequently if

3.2.3 Memory Data Flow Techniques Printed: 6/22/00 3-95

CHAPTER 3 Superscalar Processors J.P. Shen

load/store instructions are allowed to execute out of order, the load instructions from a trailing
iteration can begin before the execution of the store instruction from an earlier iteration. By over-
lapping the execution of multiple iterations of the loop, performance gain is achieved for the exe-

cution of this loop.

Memory models impose certain limitation on the out of order execution of load/store instructions
by a processor. First, in order to facilitate recovery from exceptions, the sequential state of the
memory must be preserved. In other words, the memory state must evolve according to the
sequential execution of load/store instructions. Second, most shared memory multiprocessor sys-
tems assume the sequential consistency memory model, which requires that the accessing of the
shared memory by each processor be done according to program order. Both of these reasons
effectively require that store instructions must be executed in program order, or at least the mem-
ory must be updated as if stores are performed in program order. If stores are required to execute
in program order, WAW and WAR memory data dependences are implicitly enforced and are not
an issue. Hence, only RAW memory data dependences must be enforced.

3.2.3.4 Load Bypassing and Load Forwarding

Out-of-order execution of load instructions is the primary source for potential performance gain.
As can be seen in the DAXPY example, load instructions are frequently at the beginning of
dependence chains and their early execution can facilitate the early execution of other dependent
instructions. While relative to memory data dependences, load instructions are viewed as per-
forming read operations on the memory locations, they are actually performing write operations
to their destination registers. With loads being register-defining (DEF) instructions, they are typ-
icallly followed immediately by other dependent register-use (USE) instructions. The goal is to
allow load instructions to begin execution as early as possible, possibly jumping ahead of other
preceding store instructions, as long as RAW memory data dependences are not violated and that
memory is updated according to the sequential memory consistency model.

FIGURE 62 Early execution of load instructions: (a) load bypassing; (b) load forwarding.
Dynamic instruction sequence: Dynamic instruction sequence:
f.;:acdut:fl&aed St.ore X St_ore X Forward the
two stores. Store Y Store Y Zt.ore data
. . irectly to
load Z Load X the load.
(a) (b)

3.2.3 Memory Data Fiow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cMu

Two specific techniques for early out-of-order execution of loads are: load bypassing and load
forwarding. As shown in Figure 62a, load bypassing allows a trailing load to be executed earlier
than preceding stores if the load address does not alias with the preceding stores, i.e. there is no
memory data dependence between the stores and the load. On the other hand, if a trailing load
aliases with a preceding store, i.e. there is a RAW dependence from the store to the load, load for-
warding allows the load to receive its data directly from the store without having to access the
data memory; see Figure 62b. In both of these cases, earlier execution of a load instruction is
achieved.

Before we discuss the issues that must be addressed in order to implement load bypassing and
load forwarding, we first present the organization of the portion of the execution core responsible
for processing load/store instructions. This organization, shown in Figure 63, is used as the vehi-
cle for our discussion on load bypassing and load forwarding. There is one store unit (2 pipe
stages) and one load unit (3 pipe stages); both are fed by a common reservation station. For now
we assume that load and store instructions are issued from this shared reservation station in pro-
gram order. The store unit is supported by a store buffer. The load unit and the store buffer can
access the data cache.

FIGURE 63 Mechanisms for load/store processing: separate load and store units with in order issuing from
a common reservation station.

I] b I 1. | Reservation Station .

Y
Y

Address Generation | Address Generation
Store Load
Address Translation | unit unit Address Translatipn
Memory Access
(Finished) —r |
Store Buffer , Data Address
(Completed) .
Store Buffer Data Cache
Memory Update A

Given the organization of Figure 63, a store instruction can be in one of several states while it is
in flight. When a store instruction is dispatched to the reservation station, an entry in the reorder
buffer is allocated for it. It remains in the reservation station until all of its source operands

3.2.3 Memory Data Flow Techniques Printed: 6/22/00 3-97

CHAPTER 3 Superscalar Processors J.P. Shen

become available and it is issued into the pipelined execution unit. Once the memory address is
generated and successfully translated, it is considered to have finished execution and is placed
into the finished portion of the store buffer (the reorder buffer is also updated). The store buffer
operates as a queue and has two portions, finished and completed. The finished portion contains
those stores that have finished execution but are not yet architecturally completed. The com-
pleted portion of the store buffer contains those stores that are completed architecturally but wait-
ing to updated the memory. The identification of the two portions of the store buffer can be done
via a pointer to the store buffer or a status bit in the store buffer entries. A store in the finished
portion of the store buffer can potentiaily be speculative and when a misspeculation is detected it
will need to be flushed from the store buffer. When a finished store is completed by the reorder
buffer, it changes from the finished state to the completed state. This can be done by updating the
store buffer pointer or flipping the status bit. When a completed store finally exits the store buffer
and updates the memory it is considered retired. Viewing from the perspective of the memory
state, a store does not really finish its execution until it is retired. When an exception occurs, the
stores in the completed portion of the store buffer must be drained in order to appropriately
update the memory. So between being dispatched and retired, a store instruction can be in one of
three states: issued (in the execution unit), finished (in the finished portion of the store buffer),
and completed (in the completed portion of the store buffer).

One key issue in implementing load bypassing is the need to check for possible aliasing with pre-
ceding stores, i.e. those stores being bypassed. A load is considered to bypass a preceding store,
if the load reads from the memory before the store writes to the memory. Hence before such a
load is allowed to execute or read from the memory, it must be determined that it does not alias
with all the preceding stores that are still in flight, i.e. those that have been issued but not retired.
Assuming in-order issuing of load/store instructions from the load/store reservation station, all
such stores should be sitting in the store buffer, in both the finished and the completed portions.
This alias checking for possible dependence between the load and the preceding store can be
done using the store buffer. A tag field containing the memory address of the store is incorpo-

rated with each entry of the store buffer. Once the memory address of the load is available, this

address can be used to perform an associative search on the tag field of the store buffer entries. If
a match occurs, then aliasing exists and the load is not allowed to execute out of order. Other-
wise, the load is independent of the preceding stores in the store buffer and can be executed
ahead of them. This associative search can be performed in the third pipe stage of the load unit
concurrent with the accessing of the data cache. If no aliasing is detected the load is allowed to
finish and the corresponding renamed destination register is updated with the data returned from
the data cache. If aliasing is detected the data returned by the data cache is discarded and the load
is held back in the reservation station for future reissue.

Most of the complexity in implementing load bypassing is the store buffer and the associated
associative search mechanism. To reduce the complexity, the tag field used for associative search
can be reduced to contain only a subset of the address bits. Using only a subset of the address bits
can reduce the width of the comparators needed for associative search. However, the result can
be pessimistic. Potentially, aliasing can be indicated by the narrower comparators when it really

e

3.2.3 Memory Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cMu

doesn't exist if the full length address bits were used. Some of the load bypassing opportunities
can be lost due to this optimization of the implementation. In general, the degradation of perfor-
mance is minimal if enough address bits are used.

FIGURE 64

ustration of load bypassing.

r [| | ' | | Reservation Station
N g
Store Load

unit — o me wm e e DIt Address
* ag match
Dat
data ata

(Finished)
Store Buffer

If no match: update
destination register

(Completed)
Store Buffer

Data Cache

A

a8
<i- L o3 b B B e -:‘1
-1

Match/No match

Load forwarding technique further enhances and complements the load bypassing technique.
When a load is allowed to jump ahead of preceding stores, if it is determined that the load aliases
with a preceding store, there is the potential to satisfy that load by forwarding the data directly
from the aliased store. Essentially a memory RAW dependence exists between the leading store
and the trailing load. The same associative search of the store buffer is needed. When aliasing is
detected, instead of holding the load back for future reissue, the data from the aliased entry of the
store buffer is forwarded to the renamed destination register of the load instruction. This tech-
nique not only allows the load to be executed early, it also eliminates the need for the load to
access the data cache. This can reduce the bandwidth pressure on the bus to the data cache.

To support load forwarding added complexity to the store buffer is required. First, the full length
address bits must be used for performing the associative search. When a subset of the bits is used
for supporting load bypassing, the only negative consequence is lost opportunity. For load for-
warding the alias detection must be exact before forwarding of data can be performed, otherwise
it will lead to semantic incorrectness. Second, there can be multiple preceding stores in the store
buffer that will alias with the load. When such multiple matches occur during the associative
search, there must be logic added to determine which of the aliased stores is the most recent. This
will require additional priority encoding logic to identify the latest store to which the load is

3.2.3 Memory Data Flow Techniques Printed: 6/22/00 3-99

CHAPTER 3 Superscalar Processors

J.P. Shen

dependent on before forwarding is performed. Third, an additional read port may be required for
the store buffer. Prior to the incorporation of load forwarding, the store buffer has one write port
that interfaces with the store unit and one read port that interfaces with the data cache. A new

read port is now required that interfaces with the load unit.

RIGURE 65

Iustration of load forwarding.

CT T
N

Store

unit Fo— — -

* v Tag match

data addr
(Finished) v
Store Buffer

matcn

(Completed)
Store Buffer

— — <} unit

Load

Address

-} - FReservation Station

Data |

If match: forward to

— destination register Data Cache |
W |
I ! | A

v Match/No match

Significant performance improvement can be obtained with load bypassing and load forwarding.
According to Mike Johnson [], typically load bypassing can yield 11%-19% performance gain
and load forwarding can yield another 1%-4% of additional performance improvement.

So far we have assumed that loads and stores share a common reservation station with instruc-
tions being issued from the reservation station to the store and the load units in program order.
This in-order issuing assumption ensures that all the preceding stores to a load will be in the store
buffer when the load is executed. This simplifies memory dependence checking; only an associa-
tive search of the store buffer is necessary. However this in-order issuing assumption introduces a
unnecessary limitation on the out-of-order execution of loads. A load instruction can be ready to
be issued, however a preceding store can hold up the issuing of the load even though the two
memory instructions do not alias. Hence allowing out-of-order issuing of loads and stores from
the load/store reservation station can permit a greater degree of out-of-order and early execution
of loads. This is especially beneficial if these loads are at the beginnings of critical dependence
chains and their early execution can remove critical performance bottlenecks.

3-100

3.2.3 Memory Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN CMU

If out-of-order issuing from the load/store reservation station is allowed, a new problem must be
solved. If a load is allowed to be issued out of order, then it is possible for some of the stores that
precede it to still be in the reservation or in the execution pipe stages, and not yet in the store
buffer. Hence, simply performing an associative search on the entries of the store buffer is not
adequate for checking for potential aliasing between the load and all its preceding stores. Worse
yet, the memory addresses for these preceding stores that are still in the reservation station or in
the execution pipe stages may not be available yet.

FIGURE 66

Store Buffer

(Completed)
Store Buffer

Fully out-of-order issuing and execution of load and store instructions.

b Lol I IReservation Station

Store Load
unit o o — - unit Address
' Tag match
y Data
data | addr
(Finished) T Al finish: update
I Tag match renamed register
=] ArSiore complerion §
I | L. addr | data |
T] Finished v 1 Data Cache
—1 Load Buffer] | |
T ! |
1 . ' A
v At completion: update
Y architecied register
Match/No match Match/No match

If match: flush aliased load
and all trailing instructions

One approach is to allow the load to proceed assuming no aliasing with the preceding stores that
are not yet in the store buffer and then validate this assumption later. With this approach a load is
allowed to issue out of order and be executed speculatively. If it does not alias with any of the
stores in the store buffer, the load is allowed to finish execution. However, this load must be put
into a new buffer called the finished load buffer; see Figure 66. The finished load buffer is man-
aged in a similar fashion as the finished store buffer. A load is only resident in the finished load
buffer after it finishes execution and before it is completed. Whenever a store instruction is being
completed, it must perform alias checking against the loads in the finished load buffer. If no
aliasing is detected, the store is allowed to complete. If aliasing is detected, then it means that
there is a trailing load that is dependent on the store and that load has already finished execution.
This implies that the speculative execution of that load must be invalidated and corrected by reis-

3.2.3 Memory Data Flow Techniques Printed: 6/22/00 3-101

CHAPTER 3 Superscalar Processors J.P. Shen

suing, or even refetching, that load and all subsequent instructions. This can require significant
hardware complexity and performance penalty.

3.2.3.5 Other Memory Data Flow Techniques

Other than load bypassing and load forwarﬂing, there are other memory data flow techniques.
These techniques all have the objective of increasing the memory bandwidth and/or reducing the
memory latency. As superscalar processors get wider, greater memory bandwidth capable of sup-
porting multiple load/store instructions per cycle will be needed. As the disparity between pro-
cessor speed and memory speed continues to increase, the latency of accessing memory,
especially when cache misses occur, will become a serious bottleneck to machine performance.

FIGURE 67 Dual-ported and non-blocking data cache.
[| | | | JReservation Station
Store I Load Load
unit | unit JAddress unit Address
} Cache|miss

(Finished) | I

Store Buffer

(Completed)
Store Buffer

Data Cache

Main Memory

One way to increase memory bandwidth is to employ multiple load/store units in the execution

core supported by a multi-ported data cache. In Subsection 3.2.3.4 we have assumed the presence
of one store unit and one load unit supported by a single-ported data cache. The load unit has pri-
ority in accessing the data cache. Store instructions are queued in the store buffer and are retired
from the store buffer to the data cache whenever the memory bus is not busy and the store buffer
can gain access to the data cache. The overall data memory bandwidth is limited to one load/store

3102 3.2.3 Memory Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN CMU

instruction per cycle. This is a serious limitation, especially when there are bursts of load instruc-
tions. One way to alleviate this bottleneck is to provide two load units as shown in Figure 67 and
a dual-ported data cache. A dual-ported data cache is able to support two simultaneous cache
accesses in every cycle. This will double the potential memory bandwidth. However it comes
with the cost of hardware complexity; a dual-ported cache can require doubling of the cache
hardware. One way to alleviate this hardware cost, is to implement interleaved data cache banks.
With the data cache being implemented as multiple banks of memory, two simultaneous accesses
to different banks can be supported in on cycle. If two accesses need to access the same bank, a
bank conflict occurs and the two accesses must be serialized. From practical experience, a cache
with eight banks can keep the frequency of bank conflicts down to acceptable levels.

The most common way to reduce memory latency is the use of a cache. Caches are now widely
employed. As the gap between processor speed and memory speed widens, multiple levels of
caches are required. Most high performance superscalar processes incorporate at least two levels
of caches. The first level (L1) cache can usually keep up with the processor speed with access
latency of one or very few cycles. Typically there are separate L1 caches for storing instructions
and data. The second level (1.2) cache, typically supports the storing of both instructions and
data, can be either on chip or off chip, and can be accessed in series (in case of a miss in the L1)
or in parallel with the L1 cache. Other than the use of a cache or a hierarchy of caches, there are
two other techniques for reducing the effective memory latency, namely nonblocking cache
[Kroft81, Sohi&Franklin91] and prefetching cache [Jouppi90,Chen&Baer91].

A nonblocking cache can reduce the effective memory latency by reducing the performance pen-
alty due to cache misses. Traditionally, when a load instruction encounters a cache miss, it will
stall the load unit pipeline and any further issuing of load instructions, until the cache miss is ser-
viced. Such form of stalling is overly conservative and prevents subsequent and independent
loads that may hit in the data cache from being issued. A nonblocking data cache alleviates this
unnecessary penalty by putting aside a load that has missed in the cache into a missed load queue
and allow subsequent load instructions to issue; see Figure 67. A missed load sits in the missed
load queue while the cache miss is serviced. When the missing block is fetched from the main
memory, the missed load exits the missed load queue and finishes execution.

Essentially the cache miss penalty cycles are overlapped with, and masked by, the processing of
subsequent independent instructions. Of course, if a subsequent instruction depends on the
missed load, the issuing of that instruction is stalled. The number of penalty cycles that can be
masked depends on the number of independent instructions following the missed load. A missed
load queue can contain multiple entries allowing multiple missed loads to be serviced concur-
rently. Potentially the cache penalty cycles of multiple missed loads can be overlapped to result
in fewer total penalty cycles.

A number of issues must be considered when implementing nonblocking caches. Load misses
can occur in bursts. The ability to support multiple misses and overlap their servicing is impor-
tant. The interface to main memory, or a lower level cache, must be able to support the overlap-

3.2.3 Memory Data Flow Techniques Printed: 6/22/00 3-103

CHAPTER 3 Superscalar Processors J.P. Shen

ping or pipelining of multiple accesses. The filling of the cache triggered by the missed load may
need to contend with the store buffer for the write port to the cache. There is one complication
that can emerge with nonblocking caches. If the missed load is on a speculative path, i.e. the pre-
dicted path, there is the possibility that the speculation, i.e. branch prediction, will turn out to be
incorrect. If a missed load is on a mispredicted path, the question is whether the cache miss
should be serviced. In a machine with very aggressive branch prediction, the number of loads on
the mispredicted path can be significant; servicing their misses speculatively can require signifi-
cant memory bandwidth. Studies [Chen&Baer92] have shown that a nonblocking cache can
reduce the amount of load miss penalty by about 15%.

Another way to reduce or mask the cache miss penalty is through the use of a prefetching cache.
A prefetching cache anticipates future misses and triggers these misses early so as to overlap the
miss penalty with the processing of instructions preceding the missing load. Figure 68 illustrates
a prefetching data cache. Two structures are needed to implement a prefetching cache, namely a
memory reference prediction table and a prefetch queue. The memory reference prediction table
stores information about previously executed loads in three different fields. The first field con-
tains the instruction address of the load and is used as a tag field for selecting an entry of the
table. The second field contains the previous address of the load, while the third field contains a
stride value that indicates the difference between the previous two addresses used by that load.
The memory reference prediction table is accessed via associative search using the fetch address
produced by the branch predictor and the first filed of the table. When there is a tag match, indi-
cating a hit in the memory reference prediction table, the previous address is added to the stride
value to produce a predicted memory address. This predicted address is then loaded into the
prefetch queue. Entries in the prefetch queue are retrieved to speculatively access the data cache
and if a cache miss is triggered the main memory or the next lower level cache is accessed. The
access to the data cache is in reality a cache touch operation, i.e. access to the cache is attempted
in order to trigger a potential cache miss and not to actually retrieve the data in the cache.

The goal of a prefetching cache is to try to anticipate forthcoming cache misses and to trigger
those misses early 50 as to hide the cache miss penalty by overlapping cache refill time with pro-
cessing of instructions preceding the missing load. When the anticipated missing load is executed
the data will be resident in the cache; hence no cache miss is triggered and no cache miss penalty
is incurred. The actual effectiveness of prefetching depends on a number of factors. The prefetch-
ing distance, i.e. how far in advance is the prefetching being triggered, must be large enough in
order to fully mask the miss penalty. This is the reason that the predicted fetch address is used to
access the memory reference prediction table, with the hope that the prefetch will occur far
enough in advance of the load. However, this makes prefetching effectiveness subject to the
effectiveness of branch prediction. Furthermore, there is the potential of polluting the data cache
with prefetches that are on the mispredicted path. Status or confidence bits can be added to each
entry of the memory reference prediction table to modulate the aggressiveness of prefetching. A
converse problem can occur when the prefetching is performed too early so as to evict a useful
block from the cache and induce a unnecessary miss. One more factor is the actual memory refer-
ence prediction algorithm used. Load address prediction based on stride is quite effective for

3.2.3 Memory Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN CMU

loads that are stepping through an array. For other loads that are traversing linked list data struc-
tures, the stride prediction will not work very well. Prefetching for such memory references will
require much more sophisticated prediction algorithms.

FIGURE 68 Prefetching data cache.

Branch —1— P l-cache

Predictor |
[D on e A e T
i
A CT 1T I 1] Decode Buffer V
T
Decode Memory
! - Reference
T ¥ 1-F []-] Dispatch Buffer
| O TTJ |::12] Disp. Prediction
Dispatch Y
Reservation I
\ y Stations ¢ v
ssfen] ke —Teich
store Queue
Y v ¥ Y Y !
re—=-9
(-]
Completion Buffer {_1..1 j{JJl 50 B v l
|
Complete = :
jg: Data Cache I i
wn

L Y |

Main Memory

To enhance memory data flow load instructions must be executed early and fast. Store instruc-
tions are less important because experimental data indicate that they occur less frequent than load
instructions and they usually are not on the performance critical path. To speed up the execution
of loads we must reduce the latency for processing load instructions. The overall latency for pro-
cessing a load instruction include four components: 1) pipeline frontend latency for fetching,
decoding and dispatching the load instruction; 2) reservation station latency for waiting for regis-

3.2.3 Memory Data Flow Techniques Printed: 6/22/00 3-105

CHAPTER 3 Superscalar Processors J.P. Shen

ter data dependence to resolve; 3) execution pipeline latency for address generation and transla-
tion; and 4) the cache/memory access latency for retrieving the data from memory. Both
nonblocking and prefetching caches address only the fourth component, which is a crucial com-
ponent due to the slow memory speed. In order to achieve higher clocking rates, superscalar
pipelines are quickly becoming deeper and deeper. Consequently the latencies, in terms of num-
ber of machine cycles, of the first three components are also becoming quite significant. A num-
ber of speculative techniques have been proposed to address the reduction of these latencies; they
include: load address prediction, load value prediction and memory dependence prediction [].

Recently load address prediction technique has been proposed to address the latencies associated
with the first three components. To deal with the latency associated with the first component, a
load prediction table, similar to the memory reference prediction table, is proposed. This table is
indexed with the predicted fetch address, and a hit in this table indicates the presence of a load
instruction in the current fetch group. Hence the prediction of the presence of a load instruction
in the next fetch group is performed during the fetch stage and without requiring the decode and
dispatch stages. Each entry of this table contains the predicted effective address which is
retrieved during the fetch stage, in effect eliminating the need for waiting in the reservation sta-
tion for the availability of the base register value and the address generation stage of the execu-
tion pipeline. Consequently, data cache access can begin in the next cycle and potentially data
can be retrieved from the cache at the end of the decode stage. Such form of load address predic-
tion can effectively collapse the latencies of the first three components down to just two cycles,
i.e. fetch and decode stages, if the address prediction is correct and that there is a hit in the data
cache.

While the hardware structures needed to support load address prediction are quite similar to that
needed for memory prefetching, the two mechanisms have significant differences. Load address
prediction is actually executing, though speculatively, the load instruction early; whereas mem-
ory prefetching is mainly trying to prefetch the needed data into the cache and not actually exe-
cute a load instruction. With load address prediction, instructions that depend on the load can also
execute earlier because their dependent data is available earlier. Since load address prediction is a
speculative technique, it must be validated and if misprediction is detected recovery must be per-
formed. The validation is performed by allowing the actual load instruction to be fetched from
the instruction cache and executed in a normal fashion. The result from the speculative version is
compared with the normal version. If the result concurs then the speculative result becomes non-
speculative and all the dependent instructions that were executed speculatively are also declared
as nonspeculative. If the results do not agree, then the nonspeculative result is used and all depen-
dent instructions must be reexecuted. If the load address prediction mechanism is quite accurate,
mispredictions only occur infrequently and the misprediction penalty is minimal and overall per-
formance gain can be achieved.

Even more aggressive than load address prediction is the technique of load value prediction.
Unlike load address prediction which attempts to predict the effective address of a load instruc-
tion, load value prediction actually attempts to predict the value of the data to be retrieved from

3.2.3 Memory Data Flow Techniques

3.2 SUPERSCALAR PROCESSOR DESIGN cMmu

memory. This is accomplished by extending the load prediction table to contain not just the pre-
dicted address, but also the predicted value for the destination register. Experimental studies have
shown that many load instructions’ destination values are quite predictable. For example, many
loads actually load the same value as last time. Hence, by storing the last value loaded by a static
Joad instruction in the load prediction table, this value can be used as the predicted value when
the same static load is encountered again. As a result, the load prediction table can be accessed
during the fetch stage and at the end of that cycle, the actual destination value of a predicted load
instruction can be available and used in the next cycle by a dependent instruction. This signifi-
cantly reduces the latency required for processing a load instruction if the load value prediction is
correct. Again, validation is required and at times misprediction penalty must be paid.

Other than load address prediction and load value prediction, a third speculative technique has
been proposed called memory dependence prediction. Recall that in order to perform load
bypassing and load forwarding, memory dependence checking is required. For load bypassing, it
must be determined that the load does not alias with any of the stores being bypassed. For load
forwarding, the most recent aliased store must be identified. Memory dependence checking can
become quite complex if a larger number of load/store instructions are involved and can poten-
tially require an entire pipe stage. It would be nice to eliminate this latency. Experimental data
have shown that the memory dependence relationship is quite predictable. It is possible to track
the memory dependence relationship when load/store instructions are executed and use this
information to make memory dependence prediction when the same load/store instructions are
encountered again. Such memory dependence prediction can facilitate earlier execution of load
bypassing and load forwarding. As with all speculative techniques, validation is needed and
recovery mechanism for misprediction must be provided.

3.2.3 Memory Data Flow Techniques Printed: 6/22/00 3-107

CHAPTER 3 Superscalar Processors J.P. Shen

3.3 THE POWERPC 620 MICROPROCESSOR

3.3.1

The PowerPC family of microprocessors includes the 64-bit PowerPC 620 microprocessor. The
620 is the first 64-bit superscalar processor to employ true out-of-order execution, aggressive
branch prediction, distributed multi-entry reservation stations, dynamic renaming for all register
files, six pipelined execution units, and a completion buffer to ensure precise exceptions. Most of
these features have not been previously implemented in a single-chip microprocessor. Their
actual effectiveness is of great interest to both academic researchers as well as industry designers.
This chapter presents an instruction-level, or machine-cycle level, performance evaluation of the
620 microarchitecture using a VMW-generated performance simulator of the 620.

The PowerPC 620 Microprocessor

The PowerPC Architecture [46] is the result of the PowerPC alliance among IBM, Motorola, and
Apple. It is based on the POWER Architecture [42], designed to facilitate parallel instruction
execution and to scale well with advancing technology. The PowerPC alliance has released and
announced a number of chips. The first, which provided a transition from the POWER Architec-
ture to the PowerPC Architecture, is the PowerPC 601 microprocessor [47] [48]. The second, a
low-power chip, is the PowerPC 603 microprocessor [49]. Recently, a more advanced chip for
desktop systems, the PowerPC 604 microprocessor {SO] {12}, has been shipped. The fourth chip
is the 64-bit 620 [51] [37].

The PowerPC Architecture has 32 integer registers (GPRs) and 32 floating-point registers
(FPRs). It also has a condition register which can be addressed as one 32-bit register (CR), as a
register file of 8 four-bit fields (CRFs), or as 32 single-bit fields. The architecture has a count
register (CTR) and a link register (LR), both primarily used for branch instructions, and an inte-
ger exception register (XER) and a floating-point status and control register (FPSCR), which are
used to record the exception status of the appropriate instruction types. The PowerPC instruc-
tions are typical RISC instructions, with the addition of floating-point fused multiply-add (FMA)
instructions, load/store instructions with addressing modes that update the effective address, and
instructions to set, manipulate, and branch off of the condition register bits.

The 620 is a 4-wide superscalar machine. It uses aggressive branch prediction [35] to fetch
instructions as early as possible and a dispatch policy to distribute those instructions to the execu-
tion units. The 620 uses six parallel execution units: two simple (single-cycle) integer units, one
complex (multi-cycle) integer unit, one floating-point unit (3 stages), one load/store unit (2
stages), and a branch unit. The 620 uses distributed reservation stations [68] and register renam-
ing [39] [18] to implement out-of-order execution. The block diagram of the 620 is shown in
Figure 69.

The 620 processes instructions in five major stages, namely the Fetch, Dispatch, Execute, Com-
plete, and Writeback stages. Some of these stages are separated by buffers to take up slack in
the dynamic variation of available parallelism. These buffers are the Instruction Buffer, the

3-108

3.3.1 The PowerPC 620 Microprocessor

