
High-Bandwidth Data Memory Systems for Superscalar Processors

Gurindar S. Sohi and Manoj Franklin

Computer Sciences Department

University of Wisconsin-Madison

1210 W. Dayton Street

Madison, WI 53705

Abstract

This paper considers the design of a data memory
hierarchy, with a level 1 (L1) data cache at the top, to sup-

port the data bandwidth demands of a future-generation
superscalar processor capable of issuing about ten instruc-
tions per clock cycle. It introduces the notion of cache

bandwidfh — the bandwidth with which a cache can
accept requests from the processor — and shows how the
bandwidth of a standard, blocking cache, can degrade
greatly because of its inability to overlap the service of
misses. Non-blocking or lockup-free caches are discussed
as a way of reducing the bandwidth degradation due to
misses. To improve the data bandwidth to greater than 1

request per cycle, multi-port, interleaved caches are intro-
duced. Simulation results from a cycle-by-cycle simulator,
using the MIPS R2000 instruction set, suggest that

memory hierarchies with blocking L 1 caches will be

unable to support the bandwidth demands of future-

generation superscalar processors. Multi-port, non-
blocking (MPNB) L1 caches introduced in this paper for
the top of the data memory hierarchy appear to be capable

of supporting such data bandwidth demands.

1. Introduction

As technology advances allow more functionality to
be put on a single chip, VLSI processor designers are look-
ing for ways to exploit the available resources to enhance
processor performance. One way of enhancing perfor-

mance is to exploit fine-grain parallelism and issue multi-
ple instructions in a clock cycle. By the middle of this
decade, we expect processors that attempt to issue about
ten instructions in a clock cycle to be within the realm of

possibility.

Figure 1 presents our view of the overall organiza-

tion of a superscalar processor chip that might have a peak

Permission to copy without fee all or part of this material is

granted provided that the copiee are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

titla of tha publication and its data appaar, and notice is given

that copying is by permission of tha Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
@I1991 Aclvl 0-89791.380-9/91 /0003 -0053 ...$1 .50

instruction issue rate of perhaps ten instructions per clock
cycle and a sustained issue rate of about 3-5 instructions
per cycle. The CPU has functional units for computation,

an instruction issue mechanism, an instruction cache to

supply instructions to the instruction issue mechanism, a

data cache for memory operands, and an interconnect that

connects together the various components. There could be

~---

e“—

“&
I I I

A COMP~A’IIONAL
FUNCTIONAL UNITS

[
INTERCONNECT

I

(
I

------------ -. -- J

L1-L2 BUS SINGLE CHIP CPU

v

L2 CACHE

,
,
t
1

t

,

,

,

Figure 1: A Superscalar CPU

—
] Attempts are already being made at 8 instructions per cycle [1].

53

several functional units such as floating-point adders,
floating-point multipliers, integer multipliers, integer

adders, and adders for address calculation.

At the top level of the memory hierarchy, we expect
there to be separate level 1 (Ll) instruction and data caches
as shown in Figure 1. These L 1 caches are connected to a
shared level 2 (L2) cache, via an Ll -L2 bus. The L2 cache
is in turn connected to the main memory, which may be
shared by several other processors. It is also possible that,
as technology advances, and multiple CPUS along with
their L1 caches cart be put on a chip, the L1-L2 bus and the

L2 cache maybe shared by multiple CPUS2.

To issue multiple instructions per cycle, an appropri-
ate instruction issue mechanism is needed. Several
mechanisms for issuing multiple instructions in a clock

cycle have keen published [4-6, 9-11,17, 18,20], and oth-
ers are being investigated. We will not concern ourselves
with the instruction issue mechanism of such a sttperscahu
processor in this paper, nor with the design of the L1
instruction cache that can provide the appropriate instrttc-
tion bandwidth. This is because the exact issue mechanism
that might be used to issue about ten instructions in a clock
cycle, in a superscalar fashion, and sustain an issue rate of
3-5 instructions is still the subject of research and debate
[4, 6,9-11,17, 18]. Furthermore, because of the high hit
ratios achievable for instruction caches [7, 12, 15], we feel
that a small (few kilobytes) L1 instruction cache can be

designed to support most instruction issue mechanisms,
although the exact design of such a cache will be depen-
dent on the instruction issue mechanism used.

Regardless of the instruction issue mechanism
chosen, an appropriate memory hierarchy is needed to

support the data bandwidth demands of the instruction

issue mechanism. Our focus in this paper is to see how to
provide a data memory system that can support the data
bandwidth demands of a future instruction issue mechan-
ism issuing about ten instructions per cycle.

1.1. The Importance of Data Memory Bandwidth

Why is a high-bandwidth data memory system criti-
cal? The data memory (L 1 data cache, L2 cache, and main
memory) is perhaps the most heavily demanded resource

and is likely to be a critical resource 3. Accordingly, the
peak instruction issue rate of our superscalar processor will

B Ws
be limited to —

fM

instructions per cycle, where BW~ is

2Technolog y projections have predicted a 100 miltiorr transistor

processor chip by the end of the decade. Such a processor chip may have
multiple superscrdar CPUS, each connected to it own L1 cache (of the ord-
er of tens of kilobytes), and share a common L2 cache (of the order of a
megabyte) [2].

3Even if the memory is not the critical resource and smrre other
computational frmctionat unit is, providing additicmal ccmputationat ftmc-

tional unit bandwidth is straightfonvard; all that we have to do is to pro-
vide more copies of the computational functional unit, and an enhanced

interconnect.

the bandwidth that the data memory can supply, and ~~ is
the fraction of all instructions that are loads and stores.

Clearly, any improvements in the instruction issue strategy
will be worthwhile only if they are accompanied by a com-
mensurate increase in the data memory bandwidth.

1.2. Paper Objective and Outline

The goal of this paper is to consider the design of a
data memory system to support the bandwidth demands of
a future sttperscalax CPU capable of issuing possibly tens
of instructions per clock cycle. As we shall see, this will
require a data memory bandwidth of several requests per

cycle4. We would ideally like to achieve this high
bandwidth with the freedom and the flexibility that we
have on the processor chip, i.e., with minimal additional

demands on the off-chip components of the system, such
as the L2 cache and the main memory. Accordingly, we

will concentrate mainly on the top of the data memory
hierarchy, i.e., the L1 data cache and the L1-L2 bus,
although the results of our paper could easily be applied to
the L2 cache and the L2-memory interface. Therefore,
unless stated otherwise, all references to cache shall imply
the L1 data cache. Furthermore, we shall also assume that
all data references go through the L1 cache, i.e., the L1
cache can’t be bypassed. Our results are easily extended if
the L1 cache can be selectively bypassed.

In section 2, we consider cache bandwidth, and

cache designs that can provide a high bandwidth. In sec-
tion 3, we present simulation results, using a current
instruction issue strategy, to illustrate how low-bandwidth
cache designs can be a bottleneck to performance of future
instruction issuing strategies, and in section 4, we draw our

conclusions.

2. Cache Bandwidth and High-Bandwidth Cache
Designs

Most of the literature on cache memories [16] has

concentrated on the latency with which memory requests
can be serviced with a cache memory, and mrely has there
been a discussion of the bandwidth of a cache. The possi-
ble exception to this is the literature on caches in shared-
memory multiprocessors, stanting with [3], that deal with
how a cache can be used to reduce cache-memory
bandwidth, but not specifically with how much bandwidth

a cache can provi& to the CPU. The reason for this, we
believe, is that the bandwidth of caches is rarely a major
concern for processors that issue a single instruction per
cycle since such processors do not have a very high
bandwidth demand (compared to superscalar processors).
For example, to support a peak issue rate of a single
instruction per cycle, a data cache with a bandwidth of fM

is sufficient (typically fM is in the range of 0.25-0.4 for a
load/store architecture such as the MIPS R2000) and, as

4All future references to bandwidth shalt be to the average
bandwidth, measured in requests per clock cycle.

54

we shall see, such a low average bandwidth could be

squeezed out quite easily with most conventional cache

designs. For processors capable of issuing multiple
instructions per cycle, however, the data bandwidth
demands are naturally much higher (at least the same
number of references, and possibly more if speculative
execution is performed, are made in fewer clock cycles)
and therefore, the first step in designing an L1 data cache
should be to evaluate the bandwidth that it can provide.

Let us assume that the L1 cache is a writeback cache
(a write-through cache can be analyzed similarly). A pro-
cessor request to the L1 cache can either hitor miss. If the
request hits, it is serviced by the L1 cache, without causing
any actions on the L1-L2 bus. If it misses, the L1 cache
creates a miss request, as well as a writeback request (if
the replaced block is dirty) on the L1-L2 bus.

2.1. Blocking Caches

The most commonly used and studied caches are

blocking caches. In such caches, the CPU can continue to
issue instructions as long as the memory references it
makes hit in the cache. However, when a miss occurs, the

CPU stalls instruction issues until the miss request has
been completed and the block has been fetched from the
L2 cache to the L1 cache. Therefore, with a blocking
cache, the CPU can have at most one miss request pending
and, while a miss is pending, it can accept no other
requests from the CPU, even though they might be hits.

The design of single-level blocking caches is well-
‘ understood [15, 16]; almost all computers built today have

them. Multi-level blocking caches have also been investi-

gated recently [13]. For our purposes, we note that with a
blocking cache, the L1-L2 bus interface is straightforward.
Since there is only one request from the L1 cache to the L2
cache at any time, the L1-L2 bus can be held, in a circuit-
switched fashion, until the entire transaction has been car-

ried outb. Finally, since the L2 cache has to handle only a

‘If the CPU has a dynamic dependency resolution mechanism, as
we expect it to, it can continue to issue instructions that have register-tmly
operands, and need not stafl instruction issue until the next load/store in-

struction is encountered. Our exprience has shown little difference in
performance if the CPU staUs instruction issue when the miss occurs or if

it proceeds with instruction issue until the next load/store insticticm
Therefore, we assume the standard practice of stafling instruction issue
when the miss is encountered. In either case, instmctions that are already
in execution are not statled.

6With a blccking cache, we have two choices of how to handle the
writeback request. In either case, for getting a smatler miss latency, the

miss request would be submitted to the L2 cache before the writebrtck re-
quest. The first alternative for handling the writeback request is to wait

ontif the miss request has completed and then carry out the writeback re-
quest. ‘he second alternative, which requires a more complicated L1-L2
bus design, is to release rhe L1-X.2bus after the miss rr.quest has been sub-

mitted, carry out the writeback request, and then grab the L1 -L2 bus again
to receive the response to the miss request. Since the former approach is
the more commonly-used one, we shall assume it to be the way of han-
dling writeback requests.

single request at a time, its design is also straightforward7.

The disadvantage of a blocking cache is the

bandwidth degradation that can result because misses must
be handled serially. Let us see how much bandwidth a
standard single-ported, blocking L1 cache can supply and
how much of a degradation in bandwidth can result
because of the requirement of handling misses serially.

Suppose that a program makes H+M memory
requests, where H is the number of requests that hit in the
L1 cache, and M is the number of misses. If there is a sin-
gle cache po~ the time taken to service H hits is H cycles.
The L1 cache and the L1-L2 bus are busy for (Tm +B) and
[T~ +B(l + d)] cycles, respectively, for each miss that is
serviced, where T~ is the miss time, i.e., the time taken by

the L2 cache to respond with the first word of the block
after the miss request is issued, d is the probability that the
replaced block is dirty, and B is the number of cycles taken

to transfer a block on the L1-L2 bus (of course, assuming
that the L2 cache can sustain this service rate). Since the
service of hits and misses can’t be overlapped in a block-
ing L 1 cache, the time taken by the L1 cache and the Ll -
L2 bus to service If+&f requests is (H +M[T~ +B]) and
M [T~ + B (1 + d)] cycles, respectively. The upper-bound
on the average bandwidth of the data memory system,
assuming all data references go through the L 1 cache, is
simply the minimum of the bandwidths of the L1 cache
and the L1-L2 bus, i.e.,

Min

[

H+M H+M 1H+ Mx[T~+B] ‘Mx[T~+(l+d)xB] =

Min

[

1 1

l+mx[T~+B– 1] ’rnx[T~+(l+d)xB] 1(1)

M
where m = —

H+M
is the miss ratio.

Figure 2 plots the bandwidth (requests per cycle)

provided by a memory system with a standard, single-

pcmted blocking L1 cache (which has a maximum

bandwidth of 1 request per cycle), obtained from equation
(l), versus the miss ratio m, for some values of T~, B, and

d. As we can see from the figure, the bandwidth drops
significantly as the miss ratio increases. For example, a
cache with the optimistic parameters of m = 0.05, T~ = 10,
B =1, and d= O, can achieve a bandwidth of only 0.67
requests per cycle. If we assume ~~ = 0.4, this implies that

our superscalar processor with the above L1 data cache
will be able to achieve a sustained issue rate of only 1.67
instructions per cycle, regardless of how many resources

(other than those to improve memory bandwidth) we throw
at it! It is clear that we must improve the cache bandwidth
if we hope to achieve a superscalar execution of more than
a few instructions per clock cycle.

‘As pointed out in [7], if the L2 cache’s access latency is

sufficiently high, it may have to be sufficiently pipelined to handle multi-
ple write~ck ;equests.-

55

Before proceeding further, from equation (1) we can

also see why data cache bandwidth has not been of much

concern thus far. With a peak instruction issue rate of 1
per clock cycle, and with ~~< 0.4, we require a bandwidth
of less than 0.4 requests per cycle, and this can easily be
achieved with m< 0.1, if Tm = 10 and 1 SBS4.

To improve bandwidth, we have two options: (i)
improve the bandwidth with which hits are serviced (by
providing multiple ports to service hits) or (ii) reduce the
bandwidth degradation due to misses. Fmm equation (l),
we can see that even if we provide an infinite bandwidth
for cache hits, the bandwi$h of a blocking cache can only

be improved to , a value that is dic-
m x [Tm+LB(l+d)l- ...

tated by the bandwidth with which ‘misses can be serviced
on the L1 -L2 bus. If the bandwidth degradation due to
misses is significant, as is likely to be the case unless both
m and T. are very small and B =1, it is of primary impor-
tance to consider ways of decreasing it first before consid-
ering ways to improve the cache bandwidth for hits.

2.2. Reducing Bandwidth Degradation Due to Misses:

Non-Blocking Caches

To reduce the bandwidth degradation due to misses,
we must decrease the total time spent in servicing the
misses. An obvious way to reduce the time spent in servic-
ing misses is to decrease m, Tm, or both. However, as we
mentioned earlier, both m and T~ would have to decrease

(so that their product is very small) for the bandwidth
degradation to be inconsequential. This is counter to the
current trend of increases in T~ because of increases in the
processor clock speed.

From equation (1) we see that a major reduction in
the degradation due to misses, and consequently a major
improvement in bandwidth, can be made if we eliminate
T~ from the equation entirely. This can be done if we

allow the service of multiple miss requests to be over-
lapped, in a pipelined fashion, with a packet-switched bus
in which the L1-L2 bus is not held for the duration of the
memory request. In the best case, if all M miss requests
can be overlapped perfectly, the time taken to service the

misses can be reduced8 to M(1 + d) B and the bandwidth of

a single-ported cache can be improved to:

(2)

The first term in the above equation corresponds to the
bandwidth with which requests can be submitted to the
cache, and the second term to the bandwidth with which
the misses can be serviced on the L1-L2 bus. (Implicit in
eqn. (2) is the assumption that the L2 cache has enough

% tbe servicing of slt misses is overlapped completely, in a pipe-
lined fashion with a single port on the L1 -L2 bus, the time taken to ser-
vice M misses is M(I +d)ll + T., which can be approximated by
M(I +d)tl.

bandwidth to support the peak miss request bandwidth on

the L1-L2 bus.)

2.2.1. Basic Non-Blocking Cache

To overlap miss requests, we consider a non-

blocking or lockup-free cache organization fist proposed
by Kroft [8]. In Kroft’s suggested implementation, regis-
ters cxtlkxl MSHRS (miss information/status holding regis-
ters) are used to hold the status information of the out-
standing misses. One MSHR is associated with each out-

standing miss. If there are N MSHRS, we have a non-
blocking(iV) cache. Therefore, in a non-blocking(N) cache,
there can be up to N misses being serviced concurrently,
and the service of hits can be overlapped with the service
of misses.

The MSHRS have two major functions: (i) determin-

ing whether a secondary miss has occurred (a secondary
miss is a miss to a block on which another miss request is

already pending) and (ii) routing the data supplied by the
memory to the correct cache block and CPU register. For
hits, a non-blocking cache is no different from a blocking

cache. When a miss occurs, the MSHRS are checked
(associatively) to see whether there is a pending miss to the
same cache block, i.e., whether the current miss is a secon-
dary miss. If there is no ~nding miss to the same cache
block, i.e., the current miss is a primary miss, a free

1.0

i

~------= T~=NJB=l, d=O

0.9 $, e---- T~=lO, B=4, d=l

\’, _ Tm=20, B=l, d=0

Y’ x—-~ T.=20, B=4, d=l
0.8 ;$

0.7-

; 0.6-

2
w 0.5-

i
t 0.4-
h

0.3-

0.2-

0.1-

0.0 ~
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Miss Ratio (m)

Figure 2: Data Bandwidth provided by

a Blocking L1 Data Cache

56

MSHR is obtained (the cache stalls the processor if all
MSHRS are being used). Information relevant to the ser-

vicing of the current miss, such as the cache block number

and the CPU register to which the accessed data must be
routed, are entered in the MSHR and the miss request is

submitted to memory, When the block is returned from
memory, information in the appropriate MSHR is used (we
will shortly see how to access the “appropriate” MSHR) to
route the data both to the cache for further use, as well as
to the CPU register. If a secondary miss occurs, the pro-
cessor can continue, without a very complex MSHR design
[8], unless the miss is to the same word to which the~ is a
previous miss outstanding. Readers interested in more

details of a single-ported, MSHR-based9 non-blocking
cache are referred to [8].

2.2.2. Additional Requirements of a Non-Blocking

Cache

Let us consider what the additional requirements
introduced by a non-blocking cache are with respect to a
blocking cache. First, when a miss occurs, N MSHRS have
to be searched associatively to determine whether the miss
is a secondary miss or a primary miss, whereas no such
associative search is needed in a blocking cache, Although
it may be possible to design a non-blocking cache without
penalizing the hit time, a wide associative ‘search is still
time-consuming in most cases, and every attempt should
be made to keep the associative search confined to as few
MSHRS as possible. Second, to allow the servicing of
more than one miss to be overlapped, the L 1-L2 interface
must be pipelined, or packet-switched, whereas a circttit-
switched L 1-L2 bus is sufficient for a blocking cache.
Third, if the L2 cache is handling more than one request
concurrently, not only must it be designed to provide the
bandwidth necessary to handle the requests, there must
also be a way of routing return requests to the “appropri-
ate” MSHR and from there to the requester in the CPU and
to the correct cache block. The order in which the L2
cache services requests and returns them to the L 1 cache
can be different from the order in which they were submit-

ted to it because of L2 cache misses and L2 cache inter-
leaving.

To match L2 cache responses with the appropriate
L1 cache requester, we have two main options, both of
which make demands of the L2 cache that are not made by
a blocking L1 cache. The first option is to tag the miss
request submitted to the L2 cache with the L1 cache’s
MSHR number. When the L2 cache responds, it returns
(he tag along with the response, and the tag is used to
access the correct MSHR and route the data. This option
requires both the L 1-L2 bus and the L2 cache to have

special lines dedicated to the tags (bidirectional address
lines could also be used for tags). The second option is for

the L2 cache to return responses in the same order that it

received the requests. In this case, the MSHRS can be
managed as a queue, without the need for tags, and no

additional lines are required on the L 1-L2 bus. However,
the burden is on the L2 cache to return the responses in the
order that they were received — a task that can be compli-
cated by L2 cache misses.

2.3. Improving Bandwidth of Hits: More L1 Cache
Ports

Having reduced the bandwidth degradation due to
misses with a non-blocking cache, let us now consider how

to improve the bandwidth to greater than 1 request per
cycle by providing multiple ports to service hits. If we
provide multiple ports for the L1 cache to service multiple

hits simultaneously, with a single L1-L2 port, the
bandwidth of the cache can be improved to:

‘inF’hm(l:’f)Bl(3)

where Ph is the number of ports from the CPU to the L1
cache, Let us now consider how we can provide multiple
ports.

2.3.1. Duplicate Cache Banks

A straightforward way to implement multiple read

ports is to provide multiple copies of the cache. For exam-
ple, 4 read ports can be provided to a 16Kbyte cache by

having four 16Kbyte caches that have identical contents.
We feel that this approach has a significant overhead in the
amount of memory used, especially when considering an
on-chip cache. Moreover, identical multiple copies allow
only a single write port. Therefore, we do not consider a
straightforward duplication of cache banks to be an ade-
quate solution, if we need multiple read ports without a
significant memory overhead and/or need multiple write

ports.

2.3.2. Interleaved Banks

A better way to provide multiple cache ports is to
interleave the cache blocks amongst multiple cache banks,

much in the same way as an interleaved memory l”, with a
cache block present entirely in one cache bank. Figure 3
shows how an interleaved L1 cache could be placed in the
CPU. If there are C banks, and the cache stalls the proces-
sor on a miss, we have a multi-port, blocking, or MPB(C)

cache, which can service up to C hits simultaneously (one
to each bank), but only one miss at any time.

% is possible to have alternate designs that aeeomplisb the same
task as Kroft’s design without limiting tbe number of MSHRS. The exact
rnecharrisms that aflow multiple outstanding misses to be handled is, in
our opinion, higbl y dependent upon the particular situatiort, and is stitl an
open question.

*%e straightforward way to interleave the banks is to use standard
low-order interleaving. Other interleaving schemes, such as those
described in [14, 19] could be used, and need further study.

INSTRUCTION ISSUE
(4)

I tNTERcoNNEcr I

CACHE
BANKS

I w I
uINTERLEAVED L1 CACHE L1 -L2 BUS

Figure 3: A Multi-Port Cache
with Interleaved Banks

2.3.3. Multi-Port, Non-Blocking (MPNB) Caches

Now, consider each bank of a multi-port interleaved

cache to be a non-blocking(N) cache, i.e., each cache bank
has its own set of N MSHRS. Then, with C banks, we have
an MPNB(N, C) cache that can collectively service up to

C hits (each bank has a single read/write port) in a single
clwk cycle, as well as allow up to Nx C misses to be over-
lapped simultaneously (with only N-way associative

searchs) to reduce the bandwidth degradation due to
misses.

One potential drawback of an MPNB(N, C) cache
design is the additional complexity and delay introduced
by the crossbar from the instruction issue mechanism to

the multiple cache banks (see Figure 3). Passing through
this interconnect to get to the cache can potentially degrade

the latency of cache hits. However, we can perhaps pipe-
line it so that passage through the interconnect is just an
extra stage in the execution of an instruction. This poten-
tial latency degradation for cache hits, in favor of
increased bandwidth, needs further study.

2.4. Further Reduction in Bandwidth Degradation Due

to Misses: More L1-L2 Ports

The techniques that we have considered so far for
the L1 cache use mostly the on-chip hardware, and pose
relatively few demands on the off-chip hardware (we only
required the L1 -L2 bus to be pipelined, the L2 cache to

accept requests at a peak rate of 1 per cycle, and possibly
return requests in order). We can reduce the bandwidth

degradation due to misses even further by providing multi-
ple ports on the L1-L2 bus. If we provide Pm ports on the
L1 -L2 bus, the minimum time required to service M misses

M(I + ,)B
can be further reduced to

Pm ‘
and the peak

bandwidth be improved to:

A multi-port L2 cache can be designed in ways simi-
lar to the ways proposed for a multi-port, non-blocking L1

cache. In fact, all of the design options for L1-L2 cache
interactions could be applied to L2-memory interactions.
Before going to multiple L1-L2 ports, however, we should

tirst use the pin resources in the L1-L2 interface to maxim-
ize the bandwidth of the single port rather than to increase

the number of ports. That is, we might use the additional
pins to have larger block sizes that lower m, keeping B =1.
If m for an L1 cache can be made reasonably small (say
0.05-0.1), and the small m can be achieved with a small B
(say 1), we could achieve a data bandwidth sufficient to
support the issue of perhaps ten instructions per cycle with
only a single L1-L2 port and an appropriate MI?NB L1
cache, and therefore we do not expect multiple L1-L2
ports to be needed for while (though we would perhaps
need a single, wider port so that B = 1).

3. Simulation Studies

In this section, we present some simulation studies to
evaluate the potential and utility of MINI caches. The
simulation results are not meant to be exhaustive. Rather,
they are intended to verify the observations of section 2
that blocking caches will be unable to support the data
bandwidth requirements of future-generation superscahtr
processors, and that multi-ported, non-blocking caches are

better able to support these requirements.

3.1. Evaluation Environment

All our experiments are carried out with a detailed,
cycle-by-cycle simulator that we have developed. The
instruction set architecture for the simulator is that of the

MIPS R2000; the simulator accepts a.out files compiled for
a DECstation 3100, and simulates their execution. Most

aspects of the CPU and the memory system are modeled in
detail (at the clock cycle level) by the simulator. The
simuIator is aIso detailed enough to handle the system calls
(with traps to the OS) made by most programs. This

allows benchmarks with file 1/0, such as the SPEC bench-
marks, to be simulated. By varying the parameters of the
instruction issue mechanism, the memory system, and the
resource architecture, we can simulate in detail the execu-
tion of an arbitrary program.

Because of the detail at which the simulation is car-
ried out, and because the entire memory system is
modeled, the simulator is slow. This speed restricts our
ability to explore the design space in great detail using sub-
stantial runs of large benchmark programs.

3.2. Baseline System

Our baseline system has a CPU with the instruction
set architecture of a MIPS R2000, a 16Kword L 1 instruc-

tion cache and an L1-L2 bus that has separate address and
data buses, each of which is 32 bits wide. With the above

58

L1 instruction cache, we rarely encounter instruction cache
misses for our benchmarks, and L1 instruction cache
misses account for negligible traffic on the L1 -L2 bus.

Since we are mainly interested in the L1 data cache,
we assume that all L1 misses hit in the L2 cache. The L2
cache is organized as a single-ported, interleaved memory,
with 32 banks and a bank busy time of 4 clock cycles.
Thus data can be transferred between the L1 and L2 cache

at a peak rate of 4 bytes per clock cycle, regardless of the
latency of the L2 cache, if no L2 cache bank conflicts

occur.

The baseline L1 data cache is 8Kbytes, direct
mapped, virtually addressed, and has a hit time of 1 clock

cycle. The blocking version is an 8-way interleaved

(MPB(8)) cache, and the non-blocking version is an 8-way
interleaved cache, with 4 MSHRS in each cache bank, i.e.,

an MPNB(4, 8) cache. (To have a uniform basis for com-
parison, we use the same basic organization throughout.)

3.3. Instruction Issue Strategy

For simulation, we would like to use instruction
issue strategies that can issue about ten instructions per
clock cycle, and perhaps sustain an issue rate of 3-5
instructions per cycle. Unfommately, we are unaware of

any known strategy that fits this model (although we are
aware of several research efforts, including our own).
Therefore, we will use a published instruction issue stra-
tegy, which sustains a much smaller issue rate than what
we expect to see in the future,

The issue strategy that we use is the one imple-
mented in the SIMP processor [10]. It uses dynamic
dependency resolution and branch prediction, and can
issue up to 4 instructions per clock cycle. We do not
implement branch prediction and speculative execution,
however, i.e., we do not go txyond basic blocks to
enhance instruction-level parallelism.

3.4. Benchmarks and Miss Ratios

We use 4 benchmarks for our experiments: doduc,
eqnt ott, mat rix30 O and tomcatv, taken from the
SPEC benchmark suite. The benchmarks are long pro-

grams, and take several minutes to run in their entirety on a
DECstation 3100 hardware platform. Due to resource con-

straints, we simulate the execution of only the first 100
million instructions that occur for each benchmark.

Table 1 presents the number of memory references

(in millions) in the simulated portion of each benchmark,

the execution times (in millions of clock cycles) with a

perfect memory system (i.e., a memory system in which all
memory references are serviced in a single cycle), and the

average data memory bandwidth demanded (BW~) during
the execution of the program with the issue strategy con-
sidered. The data memory bandwidth demanded is calcu-
lated as the number of data references divided by the exe-
cution time.

Fmm Table 1 we can see that the issue strategy that

we have considered is not aggressive enough, since the
average number of instructions executed per clock cycle
ranges only from 1.011 for matrix3 00 to 1.801 for

eqntott, even assuming a pe~ect memory system.
Moreover, the issue strategy does not make a very heavy
demand on the data memory bandwidth (0.278-0.682
requests per cycle). As issue strategies become more
sophisticated, and attempt to sustain an execution rate of

3-5 instructions per cycle (assuming, of course, that
sufficient parallelism exists in the programs to support this
issue rate), the demand for data bandwidth will increase
because (i) fewer clock cycles are taken to execute the
program and service the same number of “useful” data
references and (ii) additional data references may be gen-
erated that are not “useful”, i.e., do not influence computa-
tion, because of speculative execution beyond a basic
block.

In Table 2, we present the miss ratios obtained from

simulation for various block sizes, and the corresponding
bandwidth that a single-ported blocking L1 cache can sup-
ply (computed by substituting these miss ratios in equation
(1) and assuming T~ = 12 and an L1-L2 bus width of 4
bytes). We will discuss the data of Table 2 shortly.

3.5. Experimental Results

In Figure 4 we present the execution and processor

cache stall times obtained from our simulator for 9
memory configurations for each of the benchmarks. The

execution time is the actual number of clock cycles taken
to execute the first 100 million instructions, with the partic-
ular cache organization. The first group of 4 bars for each

benchmark are for 8Kbytes direct mapped MPB(8) caches,
and the second group of 4 bars are for 8Kbytes direct
mapped MPNB(4, 8) caches. The 4 bars of each group
correspond to block sizes of 4, 8, 16, and 32 bytes (block
sizes of greater than 32 bytes are not considered because
we feel that they are not a good design point for our system
since they saturate our 32-bit L1 -L2 bus). The last
(unshaded) bar for each benchmark is the execution time
with a perfect memory system. The height of each bar is
the total execution time, and the lightly shaded bottom por-
tion (if present) of each bar is the processor cache sta//
time, for that particular cache configuration. The processor

cache stall time is the amount of time the processor is
blocked from issuing instructions because the limits of the
request handling abilities of the L 1 cache have been
reached, i.e., the cache is busy servicing the peak number
of miss requests that it can handle.

The first thing to notice from Figure 4 is that the exe-
cution time with an MPNB(4, 8) cache is lower than that
with an MPB(8) cache, even for the cases where an
MPB(8) cache can provide sufficient bandwidth. For
example, the best MPNB(4, 8) configuration can improve
the execution time by 26.370, 15.1 $ZO and 17.4~0 for
doduc, eqntott and mat rix30 O, respectively. This
is despite the fact that an MPB(8) cache provides adequate
average bandwidth for our issue strategy (see Tables 1 and

59

Table 1: Benchmark Data

275

c
1 250
0

; 225

c 200
Y
; 175

e
s 150

; 125

m 100
i

~ 75

: 50
n

s 25

Memory References
(millions)

Performance with Perfect Memory

Benchmark

Loads Stores
Cycles Issue

(millions) Rate
BWD

doduc 28.003 10,106 89.775 1.114 0.424

eqntott 21.702 3.238 55.529 1.801 0.449

matrix300 17.971 9.527 98.945 1.011 0.278

tomcatv 34.755 11.740 68.181 1.467 0.682

Table 2: Miss Ratios and Bandwidth Supply with a Blocking Cache; T~ = 12

Block Size (Bytes)

Benchmark 4 8 16 32

m (’%0) BW~ m (70) B W~ m ($ZO) BW~ m (90) BW~

doduc 13.67 0.379 7,26 0.514 5.45 0.550 4.90 0.518

eqntott 17.72 0.320 10.50 0.423 6.81 0.495 5.17 0.504

matrix300 44.43 0.158 22.29 0.257 11.37 0.370 5.89 0.472

tomcatv 39.39 0.175 19.78 0.280 13.53 0.330 11.53 0,310

E Block Size= 4 bytes

❑ Block Size= 8 bytes

❑ Block Size= 16 bytes

■ Block Size= 32 bytes

❑ Perfect Memory System

)C

—
doduc eqntott matrix300

268

tomcatv

Figure 4: Execution Times and Processor Cache Stall Times for Different Cache Configurations

60

2) in these cases. The execution time improves because, blocking cache is not artificially constraining the issue stra-
although an MPB(8) cache can meet the average tegy by preventing it fmm overlapping the service of
bandwidth demand, it is unable to meet the peak miss misses with instruction issue and is therefore better able to
bandwidth demand that arises when several misses occur support more sophisticated issue strategies.
close to each other, whereas an MPNB(4, 8) cache can
easily meet this demand. 4. Conclusions

In cases where the peak bandwidth of an MPB(8)

cache is not sufficient to meet even the average bandwidth

demands of our issue strategy, significant improvements in

execution time result, in going from an MPB(8) cache to

an MPNB(4, 8) cache. For example, for tomcatv, an

MPNB(4, 8) cache is able to achieve a 91.9% performance

improvement over the best MPB(8). For a block size of 4

bytes, where an MPB(8) cache does not have sufficient

bandwidth to support the demands of the issue strategy for

arty of the benchmarks, execution time is improved by

55.0%, 19.2%, 98. 1% and 240.5% for doduc,

eqnt ott, mat rix30 O, and tomcatv, respectively.

Another point to note from Figure 4 is that in most cases,

performance with an MPNB(4, 8) cache is close to the per-

formance with a perfect memory system for the issue stra-

tegy considered, indicating little mom for further improve-

ment in the memory system.

To see if more sophisticated instruction issue stra-

tegies could be supwrted for our benchmarks, with the
cache organizations considered, we consider the processor
cache stall. Recall that this stall is the amount of time that
instruction issue is blocked because the limits of the

request handling abilities of the cache have been reached.
Therefore, the processor cache stall time is one lower

bound on the total instruction issue (and total program exe-
cution) time. As we can see from Figure 4, the processor
cache stall is a significant portion of the execution time

with the blocking cache configurational*, indicating little
room for further improvement in performance, even with
more sophisticated issue strategies. That is, even if an
instruction issue sh-ategy, that is more sophisticated than
the one we have considered, could overlap the execution of
instructions to achieve high performance, and enough

parallelism exists in the programs to allow a high degree of
overlap, a blocking cache will prevent an improvement in
performance by preventing the issue strategy from overlap-

ping instruction issue with the service of misses, and the
minimum amount of time taken to issue all program
instructions will be bound by the time taken to service all
the misses seriatly. Alternately, a blocking cache will not
be able to supply the bandwidth demanded by a more
sophisticated issue strategy.

For the non-blocking caches, the processor cache

stall time is negligible12. This indicates that a non-

As the instruction issuing capabilities of processors
are improved to allow the issue of several insmtctions per
clock cycle, among other things, the bandwidth of the data
memory system must be improved commensurately. We
have considered in this paper ways of providing a high-

bandwidth data memory hierarchy, with a level 1 data
cache at the top of the hierarchy, using the flexibility in the
use of on-chip real estate that might be provided by a
future-generation, single-chip processor, and without
requiring many demands of the off-chip components. To
the best of our knowledge, this is the first paper that con-
siders the bandwidth that a cache-based memory system
can provide to the CPU — one of the most important
metrics that ultimately dictate the performance that the
processor can achieve.

We saw that unless both the miss ratio and the miss
time for the L1 cache are very low, the bandwidth can
suffer greatly if the L1 cache is a standard blocking cache
because of the serial service of misses. To reduce this
bandwidth degradation, we considered non-blocking
caches and saw how they would impact other components
of the system. To further improve the bandwidth of the
memory system to more than one request per cycle, we

proposed interleaving the L1 cache to create a multi-ported

cache. Our proposed multi-port, non-blocking (MPNB)
cache design allows multiple memory requests to be ser-
viced in a single cycle, with only a single port to the off-
chip memory.

We also presented results of a detailed cycle-by-
cycle simulation for 4 benchmarks, compiled for a DECs-
tation 3100. Our simulation results suggest that the pro-
posed MPNB caches are a good choice for meeting the
high data bandwidth demands of future-generation super-

scalar processors, and that blocking caches are unlikely to
be able to meet this demand.

The work presented in this paper addresses only a
few of the multitude of issues in the design of an

adequate-bandwidth data memory system for superscalar
processors. We expect that many of the design tradeoffs

that have typically been studied in the context of blinking
cache designs, may not be applicable to MPNB cache
designs. Much work remains to be done in the area of
multi-ported, non-blocking cache designs — not only on
which designs are better than others, but also on metrics to

I lFor ~ blWk~g cache, since only one miss =quest cm ~ sefi~d execution time, and not of the processor cache stall. With a blocking

at a time, and since instructkm issue is blocked on a miss, the processor cache, she processor statl due to a dependence on a memory operand (that

cache stall time is simrde the time taken to service the misses serirdlv. missed in the cache) is overlapped completely with the processor cache.
1z~ ~ ~m.blo&tig cache, if the cache is always able to aCCCpta re - stall, and counts as a part of the processor cache stall. Consequently, the

quest from the processor, the processor cache stall time is zero. However,
ncn-processor-caebe-stall execution time is not the same, with and

instruction issue can be stalted because of a deoendencv on a memorv
without a non-blocking cache, in Figure 4.

.
operand. With a non-blocking cache, this stall is a part of the processor

61

evaluate the design — and evaluation techniques that are
computationally less expensive than a cycle-by-cycle
simulation of the entire system.

Acknowledgments

Financial support for Manoj Franklin was provided
by an IBM Graduate Fellowship, and for Gurindar Sohi by
NSF Grants CCR-8706722 and CCR-8919635. We would
like to thank Hakon Bugge, Jim Goodman, Mark Hill, Jim
Smith and David Wood for their comments on an earlier
draft of this paper and Jean-Loup Baer for his comments
on a previous version of this paper. We would also like to
thank the five anonymous referees for their thorough and
insightful comments. Their reviews have been very help-
ful to us in preparing this version of the paper.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

H. O. Bugge, E. H. Kristiansen, and B. O. Bakka,
“Trace-Driven Simulations for a Two-Level Cache
Design in Open Bus Systems,” in Proc. 17th Annu-

al Symposium on Computer Architecture, Seattle,

WA, pp. 250-259, May 1990.

P. P. Gelsinger, P. A. Gargini, G. H. Parker, and A.

Y. c. Yu, “Microprocessors circa 2000,” IEEE

Spectrum, vol. 26, pp. 43-47, October 1989.

J. R. Goodman, “Using Cache Memory to Reduce
Processor-Memory Traffic,” Proc. 10th Annual
Symposium on Computer Architecture, pp. KM-
131, June 1983.

G. F. Grohoski, “Machine Organization of the

IBM RISC System/6000 processor,” IBM Journal

of Research and Development, vol. 34, pp. 37-58,
January 1990.

P. Y. T. Hsu and E. S. Davidson, “Highly Con-
current Scalar Processing,” Proc. 13th Annual
Symposium on Computer Architecture, pp. 386-
395, June 1986.

N. P. Jouppi and D. W. Wall, “Available
Instruction-Level Parallelism for SuperScalar and

Superpipelined Machines,” in Proc. ASPLOS III,
Boston, MA, pp. 272-282, April 1989.

N. P. Jouppi, “Improving Direct-Mapped Cache

Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers,” in Proc.
17th Annual Symposium on Computer Architecture,
Seattle, WA, pp. 364-373, May 1990.

D. Kroft, “Lockup-Free Instruction Fetch/Prefetch
Cache Organization,” Proc, 8th International Sym-

posium on Computer Architecture, pp. 81-87, May

1981.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S. W. Melvin, M. C. Shebanow, and Y. N. Patt,
“Hardware Support for Large Atomic Units in
Dynamically Scheduled Machines,” in Proc. 21st
Annual Workshop on Microprogramming and Mi-

croarchitecture, San Diego, CA, November 1988.

K. Murakami, N. Irie, M. Kuga, and S. Tomita,
‘ ‘SIMP (Single Instruction Stream / Multiple In-
struction Pipelining): A Novel High-Speed Single-
Processor Architecture,” in Proc. 16th Annual

Symposium on Computer Architecture, Jemsalem,
Israel, pp. 78-85, May 1989.

Y. N. Pat4 W. W. Hwu, and M. Shebanow, ‘ ‘HPS,
A New Microarchitecture: Rationale and Introduc-

tion,” in Proc. 18th Annual Workshop on Mi-

croprogramming, Pacific Grove, CA, pp. 103-108,

December 1985.

D. N. Pnevmatikatos and M. D. Hill, “Cache Per-
formance of the Integer SPEC Benchmarks on a
RISC,” ACM SIGARCH Computer Architecture
News, vol. 18, pp. 53-68, June 1990.

S. A. Przybylski, Cache and Memory Hierarchy
Design: A Pe~ormance Directed Approach. San
Mateo, California: Morgan Kaufmann, 1990.

B. R. Rau, M. S. Schlansker, and D. W. L. Yen,
w 5 Stride-Insensitive Memory Sys-“The Cydra

tern,” in 1989 Int. Conference on Parallel Process-
ing, St. Charles, IL, August 1989.

A. J. Smith, “Cache Memories,” ACM Computing
Surveys, vol. 14, pp. 473-530, September 1982.

A. J. Smith, “Bibliography and Readings on CPU

Cache Memories and Related Topics,” ACM
SIGARCH Computer Architecture News, vol. 14,
pp. 22-42, January 1986.

J. E. Smith, “Decoupled Access/Execute Architec-
tures,” Proc. 9th Annual Symposium on Computer

Architecture, pp. 112-119, April 1982.

M. D. Smith, M. S. Lam, and M. A. Horowitz,
“Boosting Beyond Static Scheduling in a Super-

scalar Processor, ‘‘ in Proc. 17th Annual Symposi-

um on Computer Architecture, Seattle, WA, pp.

344-354, May 1990.

G. S. Sohi, “High-Bandwidth Interleaved

Memories for Vector Processors - A Simulation

Study,” Computer Sciences Technical Report

#790, University of Wisconsin-Madison, Madison,

WI 53706, September 1988.

G. S. Sohi, “Instruction Issue Logic for High-
Performance, Interruptible, Multiple Functional
Unit, Pipelined Computers,” IEEE Trans. on Com-
puters, vol. 39, pp. 349-359, March 1990.

62

