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Abstract—Decoder design involves choosing the optimal circuit
style and figuring out their sizing, including adding buffers if nec-
essary. The problem of sizing a simple chain of logic gates has an el-
egant analytical solution, though there have been no corresponding
analytical results until now which include the resistive effects of the
interconnect. Using simpleRC models, we analyze the problem of
optimally sizing the decoder chain withRC interconnect and find
the optimum fan-out to be about 4, just as in the case of a simple
buffer chain. As in the simple buffer chain, supporting a fan-out
of 4 often requires noninteger number of stages in the chain. Nev-
ertheless, this result is used to arrive at a tight lower bound on
the delay of a decoder. Two simple heuristics for sizing of real de-
coder with integer stages are examined. We evaluate a simple tech-
nique to reduce power, namely, reducing the sizes of the inputs of
the word drivers, while sizing each of the subchains for maximum
speed, and find that it provides for an efficient mechanism to trade
off speed and power. We then use theRC models to compare dif-
ferent circuit techniques in use today and find that decoders with
two input gates for all stages after the predecoder and pulse mode
circuit techniques with skewed N to P ratios have the best perfor-
mance.

Index Terms—Decoder circuit comparison, low power, optimal
decoder structure, optimal sizing, pulsed circuits, random access
memory (RAM), resistive interconnect.

I. INTRODUCTION

T HE DESIGN of a random access memory (RAM) is
generally divided into two parts, the decoder, which is

the circuitry from the address input to the wordline, and the
sense and column circuits, which includes the bitline to the data
input/output circuits. For a normal read access, the decoder
contributes up to half of the access time and a significant
fraction of the total RAM power. While the logical function of
the decoder is simple, it is equivalent to -input AND gates,
there are a large number of options for how to implement this
function. Modern RAMs typically implement the large fan-in
AND operation in an hierarchical structure [18]. Fig. 1 shows
the critical path of a typical three-level decode hierarchy. The
path starts from the address input, goes through the predecoder
gates which drive the long predecode wires and the global
word driver, which in turn drives the global wordline wire and
the local word drivers and finally ends in the local wordline.
The decoder designer has two major tasks: choosing the circuit
style and sizing the resulting gates, including adding buffers
if needed. While the problem of sizing a simple chain of
gates is well understood, there are no analytical results when
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Fig. 1. Divided wordline (DWL) architecture showing a three-level decode.

there isRC interconnect embedded within such a chain. We
present analytical results and heuristics to size decoder chains
with intermediateRC interconnect. There are many circuit
styles in use for designing decoders. Using simpleRC gate
delay models, we analyze these to arrive at optimal decoder
structures.

Section II first reviews the approach of logical effort [9], [19],
which uses a simple delay model to solve the sizing problem,
and provides an estimate for the delay of the resulting circuit.
This analysis allows us to bound the decoder delay and eval-
uate some simple heuristics for gate sizing in practical situa-
tions. Section III then uses this information to evaluate various
circuit techniques that have been proposed to speed up the de-
code path. The decode gate delay can be significantly reduced
by using pulsed circuit techniques [6]–[8], where the wordline
is not a combinational signal but a pulse which stays active for
a certain minimum duration and then shuts off. Fortunately, the
power cost of these techniques is modest, and in some situations
using pulses can reduce the overall RAM power. We conclude
the paper by putting together a sketch of optimal decode struc-
tures to achieve fast and low-power operation.

II. DECODERSIZING

Estimating the delay and optimal sizing of CMOS gates is a
well-studied problem. Jaeger in 1975 [1] published a solution
to the inverter problem, which has been reexamined a number
of times [2]–[5]. This analysis shows that for optimal delay,
the delay of each stage should be the same, and the fan-out of
each stage should be around 4. More recently, Sutherland and
Sproull [9], [19] have proposed an approach called logical ef-
fort that allows one to quickly solve sizing problems for more
complex circuits. We will adopt their approach to solve the de-
coder problem. The basic delay model they use is quite simple,
yet it is reasonably accurate. It assumes that the delay of a gate
is the sum of two terms. The first term is called the effort delay
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and is a linear function of the gate’s fan-out, the ratio of the
gates’s output capacitance to its input capacitance. This term
models the delay caused by the gate current charging or dis-
charging the load capacitance. Since the current is proportional
to the gate size, the delay depends only on the ratio of the gate’s
load and its input capacitance. The second term is the parasitic
delay. It models the delay needed to charge/discharge the gates’s
internal parasitic capacitance. Since the parasitics are propor-
tional to the transistor sizes, this delay does not change with
gate sizing or load. Thus using this model, the delay of a gate is
simply .

Logical effort goes one step further since it needs to optimize
different types of gates in a chain. A complex gate like a static

-input NAND gate has nMOS transistors in series, which de-
grades its speed compared to an inverter. Since all static-input
NAND gates will have the same topology, the constantfor all
these gates will be the same and will be somelarger than an
inverter. One can estimate by using a simple resistor model of
a transistor. If we further assume that the pMOS devices have 1/2
the current of an nMOS device, then a standard inverter would
have an nMOS width of and a pMOS width of . For the
NAND gate to have the same current drive, the nMOS devices
in this gate would have to be times bigger, since there are
devices in series. These larger transistors cause the input capac-
itance for each of theNAND inputs to be compared
to for the inverter. for this gate is ,1 and is
called the logical effort of the gate. Thus, the delay of a gate
is

(1)

is delay added for each additional fan-out of an inverter,
and is the effective added fan-out caused by the gate’s
parasitics. This formulation makes it clear that the only differ-
ence between an inverter and a gate is that the effective fan-out a
gate sees is larger than an inverter by a factor of. Ignoring the
small difference in parasitic delays between inverters and gates,
we can convert the gate sizing problem to the inverter sizing
problem by defining the effective fan-out to be .
Thus, delay is minimized when the effective fan-out is about 4
for each stage.

In the decode path, the signals at some of the intermediate
nodes branch out to a number of identical stages, e.g., the global
wordline signal in Fig. 1 splits to a number of local word
driver stages. The loading on the global wordline signal is
times the capacitance of the local word driver stage. If one fo-
cuses on a single path, the capacitance of all the other paths can
be accounted for by making the effective fan-out of that stage

. The amount of branching at each node is called
the branching effort of the node and the total branching effort of
the path is the product of all the node branching efforts.

In general for a to decode, the total branching effort of
the critical path from the input or its complement to the output is

1Note that the actual logical effort is less than this formula since the devices
are velocity saturated, and the current through two series devices is actually
greater than 1/2. With velocity saturation, the transistors have to size up less
than two to match the current through a single device. The theory of logical
effort still holds in this case, one only needs to obtain the logical effort of each
gate topology from simulation, or from more complex transistor models.

Fig. 2. (a) Schematic of small RAM with two-level decode. (b) Equivalent
circuit of the critical path in the decoder. This models the predecode line which
has all of its gate loading lumped at the end of the wire.

since each input selects half of all the words in the RAM.
The total logical effort of the path is the effort needed to build
an -input AND function. If the wire capacitance and resistance
within the decoder are insignificant, then one could size all the
gates in the decoder using just the total effective fan-out for each
address line shown in (2). As we will see next in the context of
two and three-level decoders, this is not a bad estimate when the
wire delay is small.

Effective fan-out

Logical Effort input AND (2)

A. Two-Level Decoders

Consider a design whererow address bits have to be de-
coded to select one of wordlines with a hierarchy of two
levels. The first level has two predecoders each decoding
address bits to drive one of predecode lines. The next level
thenANDs two of the predecode lines to generate the wordline.
This is a typical design for small embedded RAMs and is shown
in Fig. 2. The equivalent critical path is shown in Fig. 2(b). Since
the delay formulas only depend on the input capacitance of the
gates, we use the input capacitance to denote the gate’s size. We
label the branching effort at the input to the wordline drivers as

, the logical effort of theNAND gate in the wordline
driver as , and the branching effort and logical effort of the
predecoder as and , respectively.

The total delay is just the sum of the delays of the gates along
the decoder path, which in turn can be expressed as the sum of
the effort delay plus the parasitic delay. The delay of the gate
driving the wire only slightly complicates the expression:

(3)
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where is close to one and is a fitting parameter to convert wire
resistance to delay.

Sizing the decoder would be an easy problem except for
the predecoder wire’s parasitic capacitance and resistance.
Differentiating (3) with respect to the variables and

, and setting the coefficients of each of the partial
differentials to zero, we get

(4)

(5)

The effective fan-out of the stages before the wire must all
be the same, as must the effective fan-outs of the gates after the
wire. The relation between the two fan-outs is set by the wire’s
parameters. The wire capacitance is part of the loading of the last
gate in the first chain, and the resistance of the wire changes the
effective drive strength of this gate when it drives the first gate
of the second chain. The total delay can now be rewritten as

(6)

The total delay can be minimized by solving for the values for
, , , and . Sizing the predecode chain is similar to sizing

a buffer chain driving a fixed load and the optimal solution is to
have as discussed in Section II. Intuitively, since
the wire’s parasitics will only slow the circuit down, the optimal
sizing tries to reduce the effect of the wire. If the wire resistance
is small, the optimal sizing will push more stages into the first
subchain, making the final driver larger and reducing the effect
of the wire capacitance. If the wire resistance is large, optimal
sizing will push more stages into the second subchain, making
the gate loading on this wire smaller, again reducing the effect of
the wire. In fact, the optimal position of the wire setsand to
try to balance the effects of the wire resistance and capacitance,
such that

(7)

This is the same condition that is encountered in the solution
for optimal placement of repeaters [22], and a detailed deriva-
tion is presented in [17]. Intuitively, if we were to make a small
change in the location of the wire in the fanup chain, then if the
above condition is true, the change in the delay of the driver will
cancel out the change in delay of the wire. Putting (7) in (4) and
(5), we find that the fan-outs of the two chains,and , are
the same. The constraints of a real design sometimes prevent
this balance from occurring, since the number of buffers needs
to be a positive, and often even, integer but we can use this op-
timal position of the wire to derive a lower bound on the delay.

If the wire did not exist, would equal , the stage
effort. Since the wire exists, this ratio, , will be less than ,
since must equal . is the effort cost
of the wire, and can be found if the wire is optimally placed, so

. In that case, substituting into (4) and (5) and
setting them equal gives

(8)

Solving for gives

(9)

where is the wire delay measured in effective fan-out. The
means that the minimal effort cost of a wire is

(10)

and the total effort of a decoder path is

(11)
Note here total branching effort and
total logical effort of a -inputAND function. Hence (11) is sim-
ilar to (2) except for the presence of factor dependent on the
interconnect which diminishes as the intrinsic delay of the in-
terconnect becomes negligible compared to a fan-out delay.

Once we know we can also solve for to find and .

(12)

(13)

Just like in the case of a simple buffer chain, the values of
, will turn out to be noninteger in general and will have

to be rounded to integer values. Nevertheless, the unrounded
values can be used in (6) to yield a tight lower bound to the
decoder delay. A useful parameter to consider is the ratio of
the total input gate capacitance of the word driver to the prede-
coder wire capacitance, which we will calland which equals

. We will evaluate two different heuristics to obtain
sizing for real decoders which have integer number of stages.
In the first heuristic H1, we keep the input gate size of ob-
tained for the lower bound case, thus achieving the same gate to
wire ratio , as in the lower bound case. Since is fixed now,
the sizing of the predecoder and the word driver chain can be
done independently as in the standard buffer sizing problem. In
the second heuristic H2, we will use (13) to estimate, and then
round it to the nearest even integer. We then use to
calculate , which fixes the predecoder problem, and it can
be sized as the standard buffer chain. We also determine the op-
timal solution for integer number of stages by doing an exhaus-
tive search of the variable valuesand between 2 to 7.5 and
a small integer range of 2 to 10 forand . Table I compares
the fan-outs, number of stages, and the delays normalized to a
fan-out 4 loaded inverter and power, for the lower bound (LB),
the optimal (OPT) and the heuristics H1 & H2 sizing. The en-
ergy is estimated as the sum of switching capacitances in the
decoder. We see that the lower bound delay is fairly tight and
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TABLE I
FAN-OUTS, DELAY, AND POWER FORDIFFERENTSIZING TECHNIQUES IN0.25-�m CMOS

close to the optimal solution which uses only integer number
of stages. Both the heuristics H1 and H2 give delay which are
within 2% of the optimal solution, with H2 being slightly faster.
For the large block of 512 256, with narrower wire, H1 and
H2 are slower by 4%. But increasing the wire size gets them to
within 2% of the optimum. We also notice that H2 consumes
significantly more power for the larger sizes blocks. The crit-
ical parameter for power dissipation is, the ratio of the word
driver input gate cap to the predecoder wire cap. Larger value
for leads to more power dissipation. We will explore this as-
pect further in Section III. In the next section, we will look at
sizing for three-level decoders.

B. Three-Level Decoder

Large RAMs typically use the divided wordline (DWL) ar-
chitecture which uses an additional level of decoding, and so
we next look at sizing strategies for three-level decoders. Fig. 3
depicts the critical path for a typical decoder implemented using
the DWL architecture. The path has three subchains, the prede-
code, the global word driver and the local word driver chains.
Let the number of stages in these be, , and . Let , ,
and be the branching efforts of the predecoder, the inputs to
the global and local word drivers, respectively, and let, ,
and be their logical efforts. For minimum delay, the fan-outs

Fig. 3. Critical path for a three-level decoder.

in each of the predecoder, global word driver, and local word
drivers need to be equal. We will call them, , and , re-
spectively. Like the two-level decoder case, if we can optimally
size for the wires, all three of these fan-outs will be the same,
and the detailed derivation is presented in [17]. Using this re-
sult, we can first calculate , and then . Using (13) as a
reference, we can write the expression foras

(14)

As was done before, here is delay of the global wordline
wire normalized to that of an inverter driving a fan-out of 4 load,
i.e., . This can be used to calculate
the size of as to give the loading for the first two
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TABLE II
FAN-OUTS, DELAY, AND ENERGY FORTHREE LEVEL DECODER IN0.25-�m CMOS

subchains as . Again using (12) and (13) for the
predecode and global word driver chains with this output load
yields the expressions for and as

(15)

(16)

Here is the normalized delay of the predecode wire.
As before the values of , , and will not in general be in-

tegers, but can be used to calculate the lower bound (LB) on the
delay. Analogous to the two-level case, we will define two ad-
ditional parameters,, the ratio of input gate cap for local word
driver to the global word wire cap, and, the ratio of input gate
cap of the global word driver to the input predecoder wire cap.
Sizing heuristics H1 and H2 can be extended to the three-level
case. In the case of H1, we keep the ratiosand the same
as in the lower-bound computation. This fixes the input sizes
of the global and word drivers and the three subchains can be
sized independently as simple buffer chains. For heuristic H2,
we round , obtained from (14) and (15) to even integers and
use . We also do an exhaustive search with
integer number of stages in the three subchains to obtain the op-
timal solution (OPT). The results for a hypothetical 1-Mb and
4-Mb SRAM in 0.25- m CMOS process for two different wire
widths are tabulated in Table II. We observe that the lower bound

is quite tight and is within a percent of the optimal solution. Un-
like in the two-level case, here heuristic H1 gives better results
than H2. H1 is within 2% of the optimum while H2 is within
8% of the optimum. H2 also consumes more power in general
and again this can be correlated with the higher ratios for the
input gate capacitance of the word drivers to the wire capaci-
tance. Increasing wire widths to reduce wire resistance not only
decreases the delay but also gets the two heuristics closer to the
optimum.

Minimum delay solutions typically burn a lot of power since
getting the last bit of incremental improvement in delay requires
significant power overhead. We will next look at sizing to reduce
power at the cost of a modest increase in delay.

C. Sizing for Fast Low-Power Operation

The main component of power loss in a decoder is the dy-
namic power lost in switching the large interconnect capaci-
tances in the predecode, block select, and wordlines, as well as
the gate and junction capacitances in the logic gates of the de-
code chain. Table III provides a breakdown of the relative con-
tribution from the different components to the total switching
capacitance for two different SRAM sizes. The total switching
capacitance is the sum of the interconnect capacitances, the tran-
sistor capacitances internal to the predecoders, the gate capaci-
tance of the input gate of the global word drivers, the transistor
capacitances internal to the global word drivers, the gate capac-
itance of the input gate of the local word drivers, and the tran-
sistor capacitances internal to the local word driver.
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TABLE III
RELATIVE ENERGY OFVARIOUS COMPONENTS OF THEDECODEPATH IN %

TABLE IV
RELATIVE DELAY OF VARIOUS COMPONENTS OF THEDECODE

PATH UNDER H1 IN %

Table IV shows the relative breakdown of the total delay
between the predecoder, the predecode wire, the global word
driver, the global wordline, and the local word driver. The two
key features to note from these tables are that the input gate
capacitance of the two word drivers contribute a significant
fraction to the total switching capacitance due to the large
branching efforts, and that the delays of the two word drivers
contribute a significant fraction to the total delay. In fact, the
input gate capacitance of the two word drivers are responsible
for more of the decoder power than is shown in the table,
as they also impact the sizing of the preceding stages. For
example, in the case of the 1-Mb SRAM, by breaking down
the power dissipation in the predecoders into two components,
one directly dependent on the word driver sizes and the other
independent on the word driver sizes, we find that 50% of
the decoder power is directly proportional to the word driver
input sizes. This suggests a simple heuristic to achieve a fast
low power operation will be to reduce the input sizes of the
two word drivers but still size each chain for max speed. A
convenient way to do this is via the parametersand , which
represent the ratio of the input gate cap to the input wire cap.
Table V shows the delay, energy, and energy–delay product for
a 1-Mb RAM decoder starting from the sizing of heuristic H1
in Row 2 of Table II and gradually reducing the ratiosand
.The last entry with and corresponds to

minimum gate sizes for the inputs of the global and local word
drivers. We observe that reducingand leads to significant
power reductions while the delay only increases modestly. In
the last row, the input gate cap of the word drivers is made
almost insignificant and we find that the energy reduces by
nearly 50% in agreement with the finding that 50% of the
decoder power under H1 is directly attributable to these sizes.
The delay in the last row only increases by two gate delays
(16%) when compared to H1 and can be accounted as follows.
Reduction of input local word driver size by a factor of 25

leads to an increase of about 2.5 gate delays in the
local word driver delay. The reduction of input global word
driver size by 10 along with the above reduction
in , leads to an increase of one gate delay in the global word
driver, while the predecode delay reduces by 0.5 gate delays.

TABLE V
DELAY AND ENERGY FOR A1-MB SRAM DECODER FORDIFFERENTRATIOS

OF WORD DRIVER INPUT GATE CAP TO INPUT WIRE CAP

Also because of the reduced capacitance, the wireRC delay
decreases by about one gate delay leading to only a two gate
delay increase in the total delay. The reduction in the energy
delay product with reducing and indicates that there is a
large range for efficient tradeoff between delay and energy by
the simple mechanism of varying the sizes of the word driver
inputs.

III. D ECODERCIRCUITS

The total logical effort of the decode path is directly affected
by the circuits used to construct the individual gates of the path.
This effort can be reduced in two complementary ways: by
skewing the FET sizes in the gates and by using circuit styles
which implement the -input logical AND function with the
least logical effort. We first describe techniques to implement
skewed gates in a power efficient way. We will then discuss
methods of implementing an-input AND function efficiently,
and finally do a case study of a pulsed 4-to-16 predecoder.

A. Reducing Logical Effort by Skewing the Gates

Since the wordline selection requires each gate in the critical
path to propagate an edge in a single direction, the FET sizes in
the gate can be skewed to speed up this transition. By reducing
the sizes for the FETs which control the opposite transition, the
capacitance of the inputs and hence the logical effort for the gate
is reduced, thus speeding up the decode path. The cost is that
separate reset devices are needed to reset the output to prevent
the slow reset transition from limiting the memory performance.
These reset devices are activated using one of three techniques:
precharge logic uses an external clock, self-resetting logic (SR-
CMOS) [6], [11] uses the output to reset the gate, and delayed
reset logic (DRCMOS) [7], [12], [13] uses a delayed version of
one of the inputs to conditionally reset the gate.

Precharge logic is the simplest to implement, but is very
power inefficient for decoders since the precharge clock is fed
to all the gates. Since in any cycle only a small percentage of
these gates are activated for the decode, the power used to clock
the reset transistors in all the decode gates can be larger than
the power to change the outputs of the few gates that actually
switch. SRCMOS and DRCMOS logic avoid this problem by
activating the reset devices only for the gates which are active.
In both these approaches, a sequence of gates, usually all in the
same level of the decode hierarchy, share a reset chain. In the
SRCMOS approach, the output of this gate sequence triggers
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Fig. 4. SRCMOS resetting technique. (a) Self-reset. (b) Predicated self-reset.

Fig. 5. A DRCMOS technique to do local self-resetting of a skewed gate.

the reset chain, which then activates the reset transistors in all
the gates to eventually reset the output (Fig. 4). The output
pulsewidth is determined by the delay through this reset chain.
If the delay of the reset chain cannot be guaranteed to be longer
than the input pulsewidths, then an extra series FET in the input
is required to disconnect the pulldown stack during the reset
phase, which will increase the logical effort of the gate. Once
the output is reset, it travels back again through the reset chain
to turn off the reset gates and get the gate ready for the next
inputs. Hence, if the input pulsewidths are longer than twice
the delay of going around the reset chain, special care must be
taken to ensure that the gate does not activate more than once.
This is achieved by predicating the reset chain the second time
around with the falling input [Fig. 4(b)]. (Another approach is
shown in [11].)

The DRCMOS gate fixes the problem of needing an extra se-
ries nFET in the input gate by predicating the reset chain acti-
vation with the falling input even for propagating the signal the
first time around the loop (Fig. 5). (Another version is shown in
[13].) Hence, the DRCMOS techniques will have the least log-
ical effort and hence the lowest delay. The main problem with

Fig. 6. Source-coupledNAND gate for a pulsed design.

Fig. 7. NOR style decoder [7].

this approach is that the output pulsewidth will be larger than the
input pulsewidth so only a limited number of successive levels
of the decode path can use this technique before the pulsewidths
will exceed the cycle time.

B. Performing an -input AND Function With Minimum
Logical Effort

The -input AND function can be implemented via different
combination ofNANDs, NORs, and inverters. Since in current
CMOS technologies, a pFET is at least two times slower than
an nFET, a conventionalNOR gate with series pFET is very in-
efficient and so theAND function is usually best achieved by a
combination ofNANDs and inverters. If we use-input NAND

gates with a logical effort of , then we will need
levels to make the -input NAND function, resulting in a total
logical effort shown in (17).

total effort (17)

For a conventional static styleNAND gate with long channel
devices, the logical effort for a-inputNAND gate is .
Using this in (17) and solving for different, we find that the
total logical effort for an -input NAND function is minimized
for . At the other extreme, if we use completely skewed
NAND gates with short channel devices, the logical effort can
be approximated by . Again minimizes the
total logical effort. Hence building the decoder out of two-input
NAND gates leads to the lowest delay. An added benefit is that
with two-input NAND gates, the least number of predecode ca-
pacitance is switched thus minimizing power dissipation. When
the two-inputNAND gate is implemented in the source-coupled
style [15], [16], its logical effort approaches that of the inverter,
if the output load is sufficiently small compared to the load at
the source input (Fig. 6). This is true for the input stage of the
word drivers.
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Fig. 8. NOR style 4-to-16 predecoder with maximal skewing and DRCMOS resetting.

Since a wide fan-inNOR can be implemented with very small
logical effort in the domino circuit style, a large fan-inNAND

can be implemented doing aNOR of the complementary inputs
(Fig. 7), and is a candidate for building high-speed predecoders.
The rationale for this approach is that with increasing number
of inputs, nFETs are added in parallel, thus keeping the log-
ical effort a constant, unlike in aNAND gate. To implement the
NAND functionality with NOR gates, Nambuet al. in [7] have
proposed a circuit technique to isolate the output node of an un-
selected gate from discharging. This is reproduced in the figure.
An extra nFET (M) on the output node B shares the same source
as the input nFETs, but its gate is connected to the output of the
NOR gate (A). When clock (clk) is low, both nodes A and B are
precharged high. When clock goes high, the behavior of the gate
depends on the input values. If all the inputs are low, then node A
remains high, while node B discharges and the decoder output is
selected. If any of the inputs are high, then node A discharges,
shutting off M and preventing node B from discharging. This
causes the unselected output to remain high. This situation in-
volves a race between A and B and is fixed by using two small
cross-coupled pFETs connected to A and B.

We will quantify the impact of skewing and circuit style on
delay and power in the next section for a 4-to-16 predecoder.

C. Case Study of a 4-to-16 Predecoder

Let us consider the design of a 4-to-16 predecoder which
needs to drive a load which is equivalent to 76 inverters of size 8.
This load is typical when the predecode line spans 256 rows. We
compare designs in both the series stack style and theNORstyle,
and for each consider both the nonskewed as well as the skewed
versions. To have a fair comparison between the designs, we
will size the input stage in each such that the total input loading
on any of the address inputs is the same across the designs. Due
to space constraints, we will only describe in detail the skewed

TABLE VI
DELAY AND POWER COMPARISONS OFVARIOUS CIRCUIT STYLES IN 0.25-�m

PROCESS AT2.5 V. DELAY OF A FAN-OUT 4 LOADED INVERTERIS 90 PS

design withNOR style gate, but report the results for the other
designs. The details for the other designs can be found in [17].

Fig. 8 shows a predecoder design which usesNOR style gate
and combines skewing and local resetting in the DRCMOS
style. The total path effort is reduced by a factor of 2.6 com-
pared to a skewed design which uses two-inputNAND gates. A
summary of delay and power for the four designs is shown in
Table VI. This is the fastest design with a delay of 202 ps (2.25
fan-out 4 loaded inverters). It has about 36% lower delay than
the slowest design, which is a conventional nonskewed version
with two-input NAND gates. We note here that this number is
almost the same as reported in [7], but we differ on to what we
ascribe the delay gains. From the examples, it is clear that the
major cause for delay improvement in this style is gate skewing,
which buys almost 26% of the reduction as seen in Table VI.
The remaining 10% gain comes from using theNOR front end.
Nambu et al. have reversed this allocation of gains in their
paper [7]. The power dissipation in the above design is kept
to about 1.33 mW, because of the DRCMOS reset technique.
(We include the power dissipation in the unselectedNOR gates,
which is not shown in the above figure for sake of clarity.)

From the table, it is apparent that skewing leads to consid-
erable speedup at very minimal power overhead andNOR style
predecoder yields the fastest design.
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Fig. 9. Schematic of fast low power three-level decoder structure.

D. Optimum Decode Structure

Based on the discussions in Section III-A–C, we can now
summarize the optimal decoder structure for fast low-power
SRAMs (Fig. 9). Except for the predecoder, all the higher levels
of the decode tree should have a fan-in of 2 to minimize the
power dissipation, as we want only the smallest number of long
decode wires to transition. The two-inputNAND function can
be implemented in the source-coupled style without any delay
penalty, since it does as well as an inverter. This has the further
advantage that under low supply voltage operation, the voltage
swings on the input wires can be reduced by half and still pre-
serve speed while significantly reducing the power to drive these
lines [20], [21]. The local word driver will have two stages in
most cases, and have four when the block widths are very large.
In the latter case, unless the applications demand it, it will be
better to repartition the block to be less wide in the interests of
the wordlineRC delay and bitline power dissipation. Skewing
the local word drivers for speed is very expensive in terms of
area due to the large numbers of these circuits. Bitline power
can be controlled by controlling the wordline pulsewidth, which
is easily achieved by controlling the block select pulsewidth.
Hence, the block select signal should be connected to the gate
of the inputNAND gate and the global word driver should be
connected to the source. Both the block select and the global
wordline drivers should have skewed gates for maximum speed,
and will have anywhere from two to four stages depending on
the size of the memory. The block select driver should be imple-
mented in the SRCMOS style to allow for its output pulsewidth
to be controlled independently of the input pulsewidths. The
global word driver should be made in the DRCMOS style to
allow for generating a wide enough pulsewidth in the global
wordline to allow for sufficient margin of overlap with the block
select signal. Since in large SRAMs the global wordline spans
multiple pitches, all the resetting circuitry can be laid out local to
each driver. In cases where this is not possible, the reset circuitry
can be pulled out and shared amongst a small group of drivers
[7]. Predecoder performance can be significantly improved at
no cost in power by skewing the gates and using local resetting
techniques. The highest performance predecoders will have a
NOR style wide fan-in input stage followed by skewed buffers.

When this is coupled with a technique such as that presented in
[7] to do a selective discharge of the output, the power dissipa-
tion is very reasonable compared to the speed gains that can be
achieved. With theNORstyle predecoder the total path effort be-
comes independent of the exact partitioning of the decode tree,
which will allow the SRAM designer to choose the best memory
organization based on other considerations.

IV. SUMMARY

We found that the optimum fan-out for the decoder chain with
RCinterconnect is about 4, just as in the case of a simple buffer
chain. As in the simple buffer chain, supporting a fan-out of 4
often requires a noninteger number of stages in the chain. Nev-
ertheless, this result can be used to arrive at a tight lower bound
on the delay of a decoder. We examined two simple heuris-
tics for sizing of a real decoder with integer stages. In one, the
number of stages in the various subchains are rounded values
based on the formulae for the lower-bound computation. The
fan-outs in the word driver chains are then kept around 4. This
heuristic does well for small RAMs with two-level decoders.
In the second heuristic, the input sizes of the word drivers are
kept the same as in the lower-bound computation. This heuristic
does well for larger blocks and three-level decoders. Reducing
wire delay by wire sizing brings the delays of both the heuristics
within a few percent of the optimum. High-speed designs burn a
lot of power. We show that varying the sizes of the inputs of the
word drivers, while sizing each of the subchains for maximum
speed, provides for a simple mechanism to efficiently trade off
speed and power.

We examined a number of circuit styles for implementing the
AND function of the decoder. We found that a decoder hierarchy
with a fan-in of 2 provides the optimal solution both in terms of
speed and power. A detailed analysis of pulse mode gates shows
that they are the most energy efficient. Finally, we put together
all the results from our analysis and sketch out the optimal de-
coder structure for fast low-power RAMs.
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