
Output Prediction Logic:
a High-Performance CMOS Design Technique

Larry McMurchie, Su Kio, Gin Yee, Tyler Thorp, and Carl Sechen
University of Washington, Seattle, Washington, USA
larry@ee.washington.edu I sechen@ee.wasington.edu

Abstract

We present Output Prediction Logic (OPL), a tech-
nique that can be applied to conventional CMOS logic
families to obtain considerable speedups. When applied to
static CMOS, OPL retains the restoring character of the
logic family, including its high noise margins. Speedups
of 2X to 3 X over (optimized) conventional static CMOS
are demonstrated for a variet), of circuits, ranging from
chains of gates, to datapath circuits, and to random logic
benchmarks. Such speedups are obtained using identical
netlists without remapping. When applied to pseudo-
nMOS and dynamic families, in combination with remap-
ping to wide-input NORs, OPL yields speedups of 4 X to
5 X over static CMOS. Since OPL applied to static CMOS
is faster than conventional domino logic, and since it has
higher noise margins than domino logic, we believe it will
scale much better than domino with future processing
technologies.

I. Introduction

Dynamic circuit families such as domino [l] are
commonly used in today’s high-performance microproc-
essors [2][3][4][5] for obtaining timing goals that are not
possible using static CMOS circuits. Their increased per-
formance is due to reduced input capacitance, lower
switching thresholds, and circuit implementations that
typically use fewer levels of logic due to the use of effi-
cient and wide complex gates. It has been shown that dy-
namic logic can be used to realize average speed im-
provements of about 60% over static CMOS for random
logic blocks when using synthesis tools tailored specifi-
cally for dynamic logic [6].

However, dynamic circuits have notable disadvan-
tages. In the case of domino, logic must be mapped to a
unate network, which usually requires duplication of
logic. Perhaps the main disadvantage going forward is its
increased noise sensitivity (compared to static CMOS).
The only way to increase its noise margin is to sacrifice
some of its performance gain. How to retain the good
attributes of static CMOS, namely high noise immunity

and easy technology mapping, while obtaining greater
speed is an elusive goal.

Output prediction logic (OPL) is a new technique that
can be applied to a variety of inverting logic families to
increase speed while retaining the attributes of the under-
lying family. OPL relies on the alternating nature of logi-
cal output values for inverting gates on a critical path.
That is, for any critical path, the logical output values of
the gates along that path will be alternating ones and ze-
ros. By correctly predicting exactly one half of the gate
outputs, OPL obtains significant speedups (at least 2X)
over the underlying logic families (e.g. static CMOS,
pseudo-nMOS and dynamic logic).

When applied to static CMOS, OPL yields circuits
that are typically 2 to 3 times faster than conventional
static CMOS implementations. Although OPL employs
clocks, OPL-static is inherently restoring logic and has
the same noise margins as conventional static CMOS.
OPL-static is also highly tolerant to clock skew, guaran-
teeing functionally correct results regardless of skew.
Additionally, OPL-static uses the same synthesis tools as
static CMOS (e.g. Synopsys). OPL can be applied to the
same netlists as conventional static CMOS with a simple
cell-for-cell substitution.

For the efficient implementation of wide NOR gates,
designers often choose gates from pseudo-nMOS or dy-
namic logic families. OPL can be applied to these fami-
lies as well. For example, a CLA adder implementation
using OPL-pseudo-nMOS for wide-input NORs obtained
a speedup of 5.4X over an optimized static CMOS imple-
mentation. These speedups were obtained while em-
ploying very conservative noise margins.

In Section 11, we introduce OPL and show how it is
applied to static CMOS circuits. In Section I11 we apply
OPL to pseudo-nMOS and dynamic circuit styles. A
means of generating the required clocks is outlined in
Section IV. Section V quantifies the performance en-
hancement obtained with OPL when applied to chains of
gates, a CLA adder and random logic benchmarks. We
present conclusions in Section VI.

247
0-7695-0801-4/00 $10.00 0 2000 IEEE

mailto:larry@ee.washington.edu
mailto:sechen@ee.wasington.edu

11. Output Prediction Logic Applied to Static
CMOS

1 1
gate3 .- gate4 .-

In static CMOS logic, every gate is an inverting logic
gate. Because of this inverting property, every output on a
critical path must fully transition from 0 to 1, or 1 to 0 in
the worst case. This is shown in Fig. 1, where we assume
the primary input transitions high. This is why static
CMOS is inherently slow. A circuit designer must take
into account this worst-case delay scenario for a static
CMOS critical path.

:arc' 1 A
l o

Figure 2. OPL predicting ones

gate will not have to make any transition (see Figure 2).
There is, however, a key problem with this idea. A

one at every output (and therefore input) is not a stable
state for an inverting gate. The one will erode (possibly
going to zero) in the latter gates of a critical path. The
solution to this problem is to tri-state each gate with a
clock, in which case ones at inputs and a one output is no
longer a contradiction for an inverting gate. The gates
remain tri-stated until their inputs are ready for evalua-
tion. In this manner, predicted output values are main-
tained until new input values dictate otherwise. Succes-

clk3

clk4 ! j I

sive clocks are delayed by a clock separation as shown in
Fig. 3 .

A tri-state, pre-charge-high static CMOS inverting
gate implementing the above idea is shown in Fig. 4.

Vnn

Fiaure 4.OPL-static CMOS NOR3.
When the clock (clk) is low, the gate is tri-stated, with the
output being charged to a logic one. When the clock goes
high, the gate becomes a conventional static CMOS gate.

While an actual circuit essentially follows this de-
sired behavior, there are important nonidealities. Fig. 5
shows a chain of 3 OPL-static inverters and Fig. 6 shows
the behavior of gate 2 as the clock arrival is varied. First,
consider the case where the input to gate 2 in Fig. 5 is
low, and therefore gate 2's output should remain high. If
the clock arrives (goes fully high) at gate 2 after its input
becomes stable at its low value, and if the clock to gate 3

V O O V O O V O O

clk l clk2 1 I - l clk3 [il
Gatel Gale2 Gate3

Figure 5. Chain of 3 OPL-static inverters.

is still low, gate 2's output will stay high at the pre-
charged (predicted) value. If the clock arrives at gate 2
while its input is settling, a small glitch occurs, as shown
in Fig. 6c. If the clock is earlier yet - when its 50% point
occurs at the same time as the 50% falling transition point
of the input to gate 2 -- the still falling (but not yet fully
zero) inputs will cause a bigger glitch at the output of gate
2 as shown in Fig. 6b. If the clock is even earlier yet, the

Figure 3. Clocking.

248

: \ : -\ \ O U t 2 1 I

a. Early C lock

b . Optimal C lock

c. Late C lock

Figure 6. Dependency of gate output upon

precharged (predicted) value is completely lost, as shown
in Fig. 6a.

The magnitude of the glitch is also enhanced by
Miller kickback capacitance from the load gate 3. The
kickback occurs when gate 3 also glitches to some extent
(for exactly the same reasons as for gate 2) or falls all the
way to 0. When this happens, gate 2's output load ca-
pacitance will be at least somewhat larger than what was
seen by gate 2's precharge device when gate 3 was fully
precharged. Should the clock to gate 3 arrive at almost the
same time as the clock to gate 2 , the kickback effect will
be large since gate 3 fully transitions to zero, causing a
significantly greater glitch at the output of gate 2 .

If we view the glitch as highly undesirable, then we
need to have the rising clock (or evaluation edge) arrive
after the inputs to a gate have fully settled. If this is done
for all gates, then the glitch will be very small. However,
in so doing, we have created what is commonly called a
clock-blocked circuit, in that the throughput of the circuit
is limited by the clocks and not the data. Hence, the
speedup achieved may not be impressive.

clock arrival for gate 2 of Fig. 5.

On the other hand, if we allow some glitching, then
we can have the evaluation clock edges arrive somewhat
earlier than the corresponding gate inputs. This will make
the circuit throughput data-limited. However, if the
glitches are all the way to zero as in Fig. 6a, the precharge
(predicted) values are completely lost and there is no rea-
son to believe that any speedup over a conventional static
CMOS inverter chain would be achieved.

clk2 I

Figure 7. Chain of 3 OPL-static NOR3 gates.

Not surprisingly, we have found that there is an opti-
mal point between the two extremes (fully clock-blocked
and fully lost precharge values). As we shall see below,
the minimum delay occurs when a modest amount of
glitch occurs, as shown in Fig. 6b.

Fig. 7 shows a chain of OPL-static NOR3 gates. A
chain of length 10, each gate having a fanout of four
identical gates was simulated using parameters from the
0.25 micron 2.5V TSMC process [8]. An optimal clock
separation was determined by sweeping over the clock
separation in Hspice to find the separation (0.1311s) that
gave the minimum delay. Waveforms for gate outputs at
this separation are shown in Fig. 8. We see half the out-

31 i
2.5

2

1.5

1

0.5

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Figure 8. Waveforms (volts vs. ns) for OPL-static
NOR3 chain at a clock seDaration of 0.13ns.

249

puts falling to zero and the other half dipping (or glitch-
ing) and then rising back up to V D D , as seen in Fig. 6b.
Note that the evaluation of successive gates overlaps con-
siderably. The objective of OPL is to control this overlap
so that low-going gates get a headstart in evaluating,
while high-going gates do not glitch excessively. If the
pull-up and pull-down strengths are the same, one would
expect the minimum overall delay should occur when a
high-going output dips to a voltage intermediate between
zero and V D ~ . This voltage should be near the maximum
gain point, where a small change in the input will cause a
large change in the output. By controlling the clock sepa-
ration we effectively position the output near this critical
voltage. This contrasts to the normal operation in static
CMOS, where gates begin evaluation at either zero or V,,
where the gain is the smallest.

Positioning gate outputs at their maximum gain point
in order to increase speed has been used previously in a
limited context. Zhu and Carlson describe such a method
called Critical Voltage Transition Logic (CVTL) [9]. In
CVTL a chain of pseudo-nMOS inverters is precharged
low, then allowed to float simultaneously to a critical
voltage (the point of maximum gain). Propagation delay
is greatly reduced by this “preconditioning” of gate out-
puts. Unfortunately, this scheme depends on a very deli-
cate balancing of loading and drive strengths between
stages in order for the preconditioning state to hold. In a

Figure 9. Total delay (ns) vs. clock separation
(ns) for OPL-static NOR3 chains.

chain of arbitrary gates, outputs will typically decay from
a precharged value unless explicitly prevented by a
method such as the OPL delayed clocks.

The dependency of total delay upon the clock sepa-
ration can be seen clearly from Fig. 9. We show three
curves, corresponding to OPL-static chains with different
PMOS device sizes (W,) in the pull-up network (pull-
clown devices were all sized with W,=2pm). At zero sepa-
ration, we have the case where every gate is precharged
high and allowed to float at the same time. Nearly all the
gates (except those near the beginning of the chain) will
decay to alternating 1’s and 0’s before having to make a
full swing to the opposite rail. Note that as the clock
separations are increased from zero, more of the gate out-
puts approach an intermediate voltage before correcting.
At the minimum in each curve, the clock separation is the
effective gate delay. Eventually, as the clock separation
continues to increase, the circuit (in effect) becomes
clock-blocking and the delay increases linearly with clock
separation.

The W11=4pm curve corresponds to the same W, and
W, as in the fully static gate. Note that the noise margin
for this gate is exactly the same as for the fully static gate.
The delay at zero separation is very close to that of the
fully static gate (4.011s vs. 3.8ns). As one would expect,
the total delay at the minimum of this curve is about half
the delay at zero separation (1.9ns vs 4.011s). We can de-
crease the width of the PMOS devices in the pull-up net-
work and thereby decrease the internal loading, speeding
the gates up. As we decrease WI, from 4pm to 2pm, then
to Ipm, we can see the minimums in the curves decrease.
However, as we decrease this size we also reduce the
ability of the gates to pull up and recover from a glitch.
This results in a very steep rise in the delay-separation
curve before the minimum point; the circuit will be sensi-
tive to clock skew in this region. A W, of 2pm was cho-
sen as a reasonable compromise between increased speed,
an ability to recover from glitches, and good noise mar-
gins, We note that the noise margin for Wp=2pm is only
slightly less than that for W,=4pm, and is much higher
than nominal domino noise margins. The role of the
PMOS pull-up network is analogous to the complex
keeper in monotonic static CMOS circuits [6] .

Note that highly accurate clocking is not required to
achieve high speedups over fully static gates. In the
W,=2pm case, a 10% error in the overall average clock
results in a speedup (over fully static) of 2.5X vs 2.8X if
the clock were positioned at the exact minimum. Such a
level of control (10%) in overall average clock skew is
readily attainable today.

250

111. Output Prediction Logic Applied to
Pseudo-nMOS and Dynamic Design

The OPL technique can be applied to pseudo-nMOS
as well as dynamic circuits. A tri-state, pre-charge-high
pseudo-nMOS gate is shown in Fig.10. When the clock
(clk) is low, the gate is tri-stated, with the output being
charged to a logic 1. When the clock goes high, it be-
comes a pseudo-nMOS gate. The pull-up serves both to
precharge the gate and correct a high output when it
glitches. This PMOS device is sized in accordance with
the pull-down stack to yield an appropriate output-low
voltage. Note that the output-low voltage can be set closer
to zero than for conventional pseudo-nMOS since pull-up
delay is less of a concern, thus lowering static power dis-
sipation (as will be shown later). The behavior of the gate
is similar to that of pseudo-nMOS. Once clk goes high,
we would expect this gate to outperform OPL-static for
wide input NORs, where the pull-up chains are not as
effective as a single pull-up device in correcting a high
output that has glitched.

Figure 10. OPL-pseudo-nMOS NOR3.

We also tested the Output Prediction Logic concept
with dynamic logic gates. As shown in Fig. 11, an OPL-
dynamic gate looks exactly like a domino gate, but with
the output inverter missing. Note that the gate precharges
high, and that the keeper, if sized sufficiently large, will
enable the output node to recover from glitches. If the
clock arrives too early (keep in mind that the inputs pre-
charge high), a gate may glitch so much that the keeper
shuts off, causing the output voltage to remain at a value
possibly well below VDD (or even zero). Thus, in contrast
to OPLstatic and OPL-pseudo, OPL-dynamic gates can
fail functionally. One must ensure that the keeper is sized
sufficiently large to correct for glitches arising from
Miller coupling (kickback) of the output to fanout gates.

Figure 11. OPL-dynamic NOR3.

Note that the OPL-dynamic gate is very different
from a conventional domino gate, as it does not have a
following inverter. Domino circuits are positive unate
and may have critical paths that require every gate to dis-
charge. Such circuits will therefore be slower than OPL-
dynamic where one can take advantage of the alternating
nature of the logical output values of the gates on critical
paths to speed up the circuit. Domino circuits also gener-
ally require logic duplication to map to positive unate
functions, in contrast to OPL circuits.

IV. Generation of Clocks

The fast speed of OPL logic requires the clocks to be
separated by a small amount, typically less than a buffer

1

1

1

dk

dkl dk4

0..

dk5 MtQ
iM

dE

0..

dk6 chain3
inv4

dk3

Figure 12. Generation of the clocks.

delay. Thus, a normal chain of delay buffers is not suffi-
cient to generate these clocks since each clock will be
separated by a buffer delay that is more than a gate delay.
The required clock separations can be generated by using
several buffer delay chains as shown in Fig. 12. For ex-
ample, if we want a clock separation equal to 1/3 of a

251

buffer delay, then inverters inv2 and inv3 are sized such
that chain2 lags chain1 by 113 of a buffer delay. There-
fore, clk2 is 113 of a buffer delay behind clkl and clk5 is
113 of a buffer delay behind clk4. Similarly, inv3 and inv4
are sized such that chain3 lags chain2 by 113 of a buffer
delay. Thus, clk3 is 113 of a buffer delay behind elk2 and
elk6 is 113 of a buffer delay behind clk5. Since clk4 is one
buffer delay behind clkl and elk3 is 213 of a buffer delay
behind clkl, elk4 is 113 of a buffer delay behind clk3. As a
result, all clocks are separated by 113 of a buffer delay. To
achieve arbitrary clock separations, we modify the buffer
delay and size inv2, inv3 and inv4 accordingly, and/or
increase or decrease the number of chains.

OPL Static

V. OPL Performance

~

910ps 2.34

To determine the performance possible with OPL, we
simulated critical paths consisting of 10 identical gates,
each gate in the path driving a load of four identical gates.
We used nominal simulation parameters for the TSMC
2.5 volt 0.25 micron process [8]. The delay results in Ta-
ble l compare static CMOS, OPL-static, OPL-pseudo-
nMOS (OPL-pseudo) and OPL-dynamic. The numbers in
parentheses are the speeds relative to the static CMOS
chain. From the INV data, it is apparent that the fanout-
of-four static CMOS inverter delay for this process is
160ps.

OPLPseudo I 6 5 0 ~ s

Table 1. Delays(ns) for chains of 10 gates (FO of 4).

3.28

1 Chain I Static I OPL Static I OPL I OPL I

The nMOS devices for all versions of the above gates
were sized to have an effective pull-down width of 2 pm.
Thus, if the pull-down portion of a gate had stack of k
transistors in series, the size of the transistors was 2k pm.
The PMOS transistors for the static CMOS gates were
uniformly sized by sweeping their size versus overall de-
lay for the chain of 10 gates, and then selecting the size
that minimized the worst case delay for the chain. As ex-
plained in Section 11, the sizes of the PMOS devices in the
OPL-static gates were selected to obtain high speed as

well as suitably fast recovery from glitches at the output
nodes. We used 2 pm for all PMOS devices except for
NAND3 and NAND4 gates which used 3 pm. For OPL-
pseudo, 1.4pm was used for the PMOS pull-up device.
The keeper pull-up PMOS device was 2 pm for OPL-
dynamic.

On average, OPL-static chains are 2.6 times faster
than static CMOS and OPL-pseudo chains are 3 times
faster than static CMOS. In fact, OPL-pseudo NOR3
chains are 5.4 times faster than static CMOS, and INV
chains are 3.86 times faster. NOR gates with an arbitrary
number of inputs are extremely fast with OPL-pseudo. On
the other hand, OPL-static is faster for NAND gates than
OPL-pseudo. OPL-dynamic has about the same perform-
ance as OPL-pseudo. The results so far have been for ho-
mogeneous chains of gates.

Table 2. Delays for heterogeneous chains of 8 gates.
Logic Family I Delay I Speedup
Static CMOS I 1 .o 2.1311s

I OPLDvnamic I 6 8 8 ~ s 1 3.10 1

We also constructed a chain of eight heterogeneous
gates, which were (in order): NOR3, NAND3, AOI22,
INV, INV, NOR3, NAND3, and AOI22. Each gate drives
a load of four identical gates. The device sizes used were
exactly those selected for the uniform chains. Having the
gates so ordered means that each gate type will have to
pull down once and stay high once. Table 2 shows the
results. While it might be expected that tailoring the clock
separations to the specific gate types would yield the best
results, we have found that not to be true. A uniform
clock separation, which is inherently easier to generate,
yields results equivalent to specially tailored clock sepa-
rations. The speedup obtained for the heterogeneous chain
is quite similar to that obtained for the average homoge-
neous chain.

W e also compared the total energy consumption for
static CMOS, OPL-static and OPL-pseudo (including
precharging energy), as well as 'OPL-dynamic. Table 3
shows that the average energy consumption of OPL-static
gates is around 1.3 times of that for static CMOS. This
energy includes the energy needed to generate the clocks,
precharge outputs, and any energy consumed during
evaluation. OPL-pseudo gates consume about 2.2 times
as much energy as static CMOS gates, on average. How-
ever, the energy consumption for OPL-pseudo NOR gates
is reasonably modest. This is because the output-low volt-
ages of these gates are rather low (pull-up delay is less of

252

a concern when predicting ones). With V,, near zero, the
static current drawn when the pull-down network is con-
ducting is fairly small. Instead of the 50% duty cycle
clocks that we used, we could have used clock pulses of
smaller duration to obtain even smaller energy consump-
tion with the OPL-pseudo gates. OPL-dynamic consumes
less energy than OPL-pseudo but offers similar speed.
Therefore, it could be a better candidate for NOR gates
than OPL-pseudo. However, as pointed out earlier, func-
tional failures are possible if output glitches are too large.

Logic Family
Static CMOS

Table 3. Energy consumption(in pJ) for chains of 10
identical gates. Numbers in parentheses are relative to

static CMOS.
Chain Static OPL Static OPL

Delay Speedup I CLA type
3.011s 1.0 I Three levels

verage (1.32) I (2.19) I (1.39) I
We now show results for complete logic networks. In

Table 4, we first consider a 32-bit carry look-ahead adder
(CLA32) network described in [5]. Two schemes were
implemented. The first scheme uses 8 4-bit Full Adders
(FA). Static CMOS can only realize this scheme since
stack heights are limited to four, and therefore three levels
of 4-bit CLA units are needed. We implemented the exact
same network using static CMOS, OPL-static and OPL-
pseudo. The speedup is close to the speedup of the
NAND4 chain in Table 1, as expected, since NAND4
gates dominate the critical path of this scheme. The sec-
ond scheme uses only two levels of CLA units by em-
ploying 8 4-bit full adders with the second level CLA
being an 8-bit unit. Thus, this scheme saves one level of
CLA units and cannot be implemented using static CMOS
since 8 series transistors would be required.

OPL Static I 1.511s I 2.0 I Three levels
OPLPseudo I 1.8211s I 1.65 I Three levels

I OPLPseudo I SS2ns I 5.43 I Twolevels I
I OPLMixed I 781ps I 4.38 I Two levels I

Since OPL-pseudo and OPL-dynamic also support
wide fan-in NOR gates, they are best suited for the second
scheme, which uses NOR gates up to NOR8. We can use
NOR gates here because we can apply DeMorgan’s law to
all the equations in the CLA unit [7]. The advantage of
the second scheme is that it only requires two levels of
CLA units in contrast to three CLA levels in the first
scheme. We implemented the second scheme using purely
OPL-pseudo and using a mix of OPL-static and OPL-
dynamic gates (OPL-dynamic was used only for the NOR
gates in the network). The speedup using purely OPL-
pseudo is about 5.4X. For the mixed OPL-static/OPL-
dynamic case, the speedup is about 4.4X but the energy
consumption is less than using purely OPL-pseudo.

We also implemented five ISCAS benchmark circuits
in both static CMOS and OPL-static. The networks were
obtained with Synopsys, using a library with functionality
similar to lib2.genlib (26 logically different cells) with the
addition of inverters and buffers of various drive
strengths. All possible Synopsys scripts were used and the
fastest static CMOS implementation was selected. The
resulting network was then used for both static CMOS
and OPL-static experiments. Note that the networks used
in both experiments were identical; only the cell imple-
mentations were different. Both implementations were
analyzed using Pathmill.

For OPL-static, all paths with delays within 10% of
the critical path were selected in Pathmill. The pull-up
delays of these gates were artificially set to be small in
Pathmill to properly mimic the behavior of OPL-static
paths in which the primary delay contributor is the pull-
down delay of every other gate in a path.

We computed the logic level of each gate and as-
signed clock i to all gates at level i. The resulting set of
OPL-static paths were then simulated using Hspice. The
clock separation was varied and the separation selected
that gave the minimum worst-case delay over all paths.

We noted from our experience with homogeneous
chains of OPL gates that optimal delays are obtained
when high gate outputs glitch down to approximately
60% of V D ~ . We also noted from the initial implementa-
tions of the ISCAS benchmarks that some of the critical
paths had gates glitching considerably more than this. We
therefore surmised that better worst-case delays could be
obtained if we prohibit glitches of more than 50% of VDD.
There are two methods that we identified to remove ex-
cessive glitches. One is to increase the PMOS transistor
widths in the pull-up network for the relevant gate. An-
other is to increase the clock separation for the slow fal-
ling gates providing inputs to the glitching gate. We im-
plemented the latter by assigning to the glitching gate the

253

next higher clock phase and propagating the reassignment
to their fanout cones.

Circuit Static OPL-static

Algorith(0ptimized-OPL)
For level = 1 to "Levels

Run Hspice on critical paths
For each gate in level

If a high gate output glitches below 1.25V
Double PMOS widths in pull-up network

End For
Run Hspice on critical paths
For each gate in level

If a high gate output glitches below 1.25V
Move gate clock ahead one phase

End For
End For

Figure 13. Optimized OPL algorithm

Opt i mi zed-OPL-
static

The Optimized-OPL algorithm, which was employed
to choose between these methods is shown in Fig. 13.
The algorithm eliminates excessive glitches level by level.
A glitch is corrected if it causes a voltage drop more than
50% of VDD (1.25V). First an attempt is made to correct
the glitch by increasing the width of the PMOS devices.
If this is not successful, the glitching gate is moved ahead
a clock phase (separation) to allow more time for late
falling inputs to arrive.

I I Delay I Delay (ns) 1 Clocks I Delay(ns) I Clocks I

Results are shown in Table 5 for static, OPL-static,
and Optimized-OPL-static. On average, OPL-static is
2.01 times faster than static CMOS. At 2.35 times static
CMOS, Optimized-OPL-static shows a significant im-
provement over OPL-static. Circuit x3 exhibits a particu-
larly large speedup over static because of the preponder-
ance of NOR3, NOR4 and inverters on critical paths.
Although Optimized-OPL-static could conceivably dou-
ble the total number of clocks, in practice at most one
additional clock gave the reported speed improvement.
Even greater speedups over static CMOS should be possi-
ble for these circuits if they were mapped to wider gates
(e.g. NORs) as was done with the CLA. Technology

mapping tools targeting such wide gates have been dem-
onstrated for CD domino logic [7].

VI. Conclusions

We presented Output Prediction Logic, a technique that
can be applied to conventional CMOS logic families tob-
tain considerable speedups. Speedups of 2X to 3X over
conventional static CMOS were demonstrated for a vari-
ety of circuits, ranging from chains of gates, to datapath
circuits, and to random logic benchmarks. These speedups
are obtained while retaining the noise margins and level
restoring nature of static CMOS as well as the same
netlists..

Acknowledgements

W e would like to acknowledge the financial support
provided by the Semiconductor Research Corporation, the
National Science Foundation, and the NSF Center for the
Design of Analog and Digital ICs (CDADIC). We would
also like to acknowledge the contributions of Jovanka
Ciric.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

D. Harris, "Skew-tolerant circuit design," Ph. D. disserta-
tion, Stanford University, Stanford, CA, 1999.
F. Klass, et. al., "A new family of semi-dynamic and dy-
namic flip-flops with embedded logic for UltraSPARC-Ill,"
IEEE J. Solid-state Circuits, vol. 34, no. 5 , pp. 712-717,
May 1999.
B. Benschneider, et. al., "A 300-MHz 64-b quad-issue
CMOS RISC microprocessor," IEEE J. Solid-State Cir-
cuits, vol. 30, no. 11, pp. 1203-1214, Nov. 1995.
A. Charnas, et. al., "A 64b microprocessor with multimedia
support," ISSCC Dig. of Tech. Papers, pp. 177-179, Feb.
1995.
R. Colwell and R. Steck, "A 0.6um BiCMOS processor
with dynamic execution," ISSCC Dig. of Tech. Papers, pp.
176-177, Feb. 1995.
T. Thorp, G . Yee and C. Sechen, "Monotonic Logic and
Dual Vt Technology", Proc. of Int. Coni on Cornputer De-
sign (ICCD), Austin, TX, October 1999.
G. Yee and C. Sechen, "Clock-delayed Domino for Adder
and Random Logic Design," Proc. IEEE Int. Conf. on
Computer Design (ICCD), October 7-9, 1996, Austin, TX.
MOSIS, "MOSIS Parametric Test Results,"
http://www.mosis.org.
Z. Zhu and B. Carlson, "Critical Voltage Transition Logic:
An Ultrafast CMOS Logic Family", Proc. IEEE Int. Conf.
On Computer Design (ICCD), Austin, TX, October 1997.

254

http://www.mosis.org

