
18-347 Project 1 Fall 2003
Carnegie Mellon University
18-347 Introduction to Computer Architecture

Project 1: Single Cycle MIPS

Due: The week of October 13, 2003 prior to the start of Lab
(100 points, may be done in groups of two)

Objective
In this project, you will become intimately familiar with the MIPS processor and instruction set by
implementing a complete single-cycle core in Verilog. 

Project Description
You will be given the skeleton of a single-cycle structural MIPS processor which is capable of
performing the ADDI and the SYSCALL instructions. You will complete the design of the single-
cycle implementation using the Verilog style implied by the skeleton. This implementation should
be a full implementation of the MIPS347; it should run anything you could run on SPIM347 or on
the instruction-level Verilog simulator (e.g., supports the instructions in the back cover of P&H). 

If you have any questions about the exact behavior of the processor, refer to the behavior of
spim347 or xspim347 on the ECE Solaris workstations. These simulators are considered the
“golden” processor models for this course, and your design should emulate them as closely as
possible. Performance is not a consideration for the single-cycle processor. Correctness counts for
the most of the credit in this project.

You are free to use your ALU and 3-ported register file from labs 1 and 2, if you choose. Keep in
mind that you will likely be starting subsequent projects from this code base, so it helps to have an
implementation that you fully understand. Support for multiply and divide instructions are required
for this project. Before you flood our mailboxes, remember that you are permitted (and
encouraged) to use behavioral constructs for these operations. We will be supplying you with fully-
functional structural models for these operations in later projects. 

Test Cases
For the demo, you will be expected to run a number of supplied programs (some revealed before
the demo, some not). In any case, you'll want to build a suite of test programs to test the new
capabilities of your implementation as you add them. We have no problem with people sharing
these programs, as long as it is available to everyone. If you have an assembly language program
that you've used to test a set of instructions, you can publish this program on the bboard. Please
state the set of instructions this program requires.

Diagram
As in the previous labs, you will also have to supply a computer-drawn diagram of your single-
1



18-347 Project 1 Fall 2003
cycle processor. You are encouraged to use decent vector drawing program to diagram your
processor. All major structures (i.e., registers, muxes, incrementers) should be drawn, as well as
boxes for various control logic blocks. You should label wires with their names and widths. For
your sanity, we suggest using different colors (or line styles) to differentiate control and data path
connections. We expect that you will base later diagrams off this one, so putting in extra effort to
keep this diagram neat will pay off. Don’t be afraid to make plenty of white space and span multiple
sheets of paper!

Handin
You should electronically handin all of your Verilog files through the course AFS space. Hand in
a paper copy of your diagram at your Lab demo period. During the demo, we will ask your
questions about your single-cycle design and test it with a number of input programs.

Files
The project code that you are starting with is significantly more complicated than in the previous
labs. A summary of the supplied modules is listed below:

mips347_struct.v: This file contains the skeleton of the MIPS ISA simulator. You will add
constants, additional decode logic, the necessary registers, muxes, and control and data paths to
support the full MIPS instruction set listed in the back of your book.

mips_mem.v: a dual-ported multi segmented memory module. Memory is divided into user data,
user text, kernel data, kernel text, and stack space. Note that the spim347 program generates all
five.dat files necessary to initialize this module. You should not have to change this file.

mips_mem_sync.v: similar to the above memory module, but synchronous. If you have problems
using the asynchronous module, you may wish to use this. You should not have to change this file.

mips_defines.v: Verilog defines for various opcodes, instruction mnemonics, and other useful
constants.

except.v: a Verilog exception handling unit. Prints errors if you encounter an exception. You
should not have to change this file.

testjig_core.v: the file containing your top testjig module with the processor core and memory

All files are available in:

/afs/ece/class/ece347/public_html/LABS/project1_files/

The addiu.s file can test the supplied addiu and syscall instructions, as soon as you integrate the
register file. 

Caveats
• The memory module, in file mips_mem.v, has been modified to provide four write enables 

per port. Each write enable corresponds to a byte in the memory. If you want to write a single 
byte in the memory, you must decode the address to enable only that byte during the write 
2



18-347 Project 1 Fall 2003
operation. 
• There are two modules in mips347_struct.v file that are not synthesizeable. They are the 

syscall_unit and the exception_unit. You should not have to modify these units. Every other 
unit is currently built in a synthesizeable way, and every other module should follow a 
similar style. You should not use any procedural/behavioral structures in those modules.

• Be aware that the multiply, divide, and modulus operators in Verilog (*, /, and %) are always 
unsigned. If you are performing a signed operation, you need to add some code. You can still 
use these operators, just take care.

• We provide one test program that currently works given the extremely limited instruction set. 
In order to assemble this program, you need to use the -notrap flag in spim347. This option 
prevents the code from including the standard exception handler and start-up code, which 
you cannot yet execute. Later when you have all instructions implemented, you should not 
have to use this flag. spim347 -vasm filename.s will generate the complete memory image 
sets for the memory module.

Grading
• Single-cycle MIPS

• Proper functionality 80 points
• Block Diagram

• Complete block diagram 20 points
• Total 100 points

Late Project Policy
Late labs and projects will lose 10 points for each day following your assigned due date and time.
The clock stops when all lab materials have been turned in (including Verilog code, diagrams,
answers to questions, etc.) and all demos have been completed.
3


	Carnegie Mellon University
	18-347 Introduction to Computer Architecture
	Project 1: Single Cycle MIPS
	Due: The week of October 13, 2003 prior to the start of Lab
	(100 points, may be done in groups of two)
	Objective


	In this project, you will become intimately familiar with the MIPS processor and instruction set by implementing a complete single-cycle core in Verilog.
	Project Description

	You will be given the skeleton of a single-cycle structural MIPS processor which is capable of performing the ADDI and the SYSCA...
	If you have any questions about the exact behavior of the processor, refer to the behavior of spim347 or xspim347 on the ECE Sol...
	You are free to use your ALU and 3-ported register file from labs 1 and 2, if you choose. Keep in mind that you will likely be s...
	Test Cases

	For the demo, you will be expected to run a number of supplied programs (some revealed before the demo, some not). In any case, ...
	Diagram

	As in the previous labs, you will also have to supply a computer-drawn diagram of your single- cycle processor. You are encourag...
	Handin

	You should electronically handin all of your Verilog files through the course AFS space. Hand in a paper copy of your diagram at...
	Files

	The project code that you are starting with is significantly more complicated than in the previous labs. A summary of the supplied modules is listed below:
	mips347_struct.v: This file contains the skeleton of the MIPS ISA simulator. You will add constants, additional decode logic, th...
	mips_mem.v: a dual-ported multi segmented memory module. Memory is divided into user data, user text, kernel data, kernel text, ...
	mips_mem_sync.v: similar to the above memory module, but synchronous. If you have problems using the asynchronous module, you may wish to use this. You should not have to change this file.
	mips_defines.v: Verilog defines for various opcodes, instruction mnemonics, and other useful constants.
	except.v: a Verilog exception handling unit. Prints errors if you encounter an exception. You should not have to change this file.
	testjig_core.v: the file containing your top testjig module with the processor core and memory
	All files are available in:
	The addiu.s file can test the supplied addiu and syscall instructions, as soon as you integrate the register file.
	Caveats

	. The memory module, in file mips_mem.v, has been modified to provide four write enables per port. Each write enable corresponds...
	. There are two modules in mips347_struct.v file that are not synthesizeable. They are the syscall_unit and the exception_unit. ...
	. Be aware that the multiply, divide, and modulus operators in Verilog (*, /, and %) are always unsigned. If you are performing a signed operation, you need to add some code. You can still use these operators, just take care.
	. We provide one test program that currently works given the extremely limited instruction set. In order to assemble this progra...
	Grading

	. Single-cycle MIPS
	. Proper functionality 80 points
	. Block Diagram
	. Complete block diagram 20 points
	. Total 100 points
	Late Project Policy

	Late labs and projects will lose 10 points for each day following your assigned due date and time. The clock stops when all lab ...

