
18-347 Lab 2 Fall 2003
Carnegie Mellon University
18-347 Introduction to Computer Architecture

Lab 2: Computer Arithmetic and ALUs

Due: The week of September 29, 2003 prior to the start of Lab
(100 points, may be done in groups of two)

Objective
In this lab you will implement the internals of an Arithmetic Logic Unit (ALU). You will see the
trade-offs in speed and area between two types of adders and understand how arithmetic and logic
circuits, along with their associated condition codes, are built.

Introduction
One of the main tasks for a microprocessor is to steer instructions into Arithmetic Logic Units
(ALUs). The ALUs (and other important parts of the processor, such as the next PC logic) need to
have fast and efficient adders, because the results of addition operations are used in virtually every
cycle. In aggressive processors, such as the Pentium 4, there are even adders which produce certain
results every half clock cycle!

For this lab, you will first implement a simple behavioral Verilog model for the ALU, then you will
structurally implement logical operators, a barrel shifter, and two versions of the adder. The
specifics of the MIPS ALU are described in Chapter 4 of Patterson and Hennessy’s Computer
Organization and Design and in your lecture notes.

Part 1: The Behavioral ALU
In the first part of this lab, you will build a simple behavioral version of the MIPS ALU. Your ALU
should be able to handle the MIPS instructions listed in Table 1.

Table 1: Instructions supported by your ALU. Instructions ignore fields marked N/A.

Instruction Operation OP Field Funct Field Shamt Field?

ADD Addition with overflow 0 0x20 No

ADDU Addition without overflow 0 0x21 No

ADDI Addition immediate with
overflow

0x08 N/A N/A

ADDIU Addition immediate with-
out overflow

0x09 N/A N/A

AND Logical bitwise AND 0 0x24 No
1

18-347 Lab 2 Fall 2003
HINT: If you are careful with your instruction decode, you only need to implement one decoding
block to handle both R and I-format instructions. Because of this, the actual number of unique
operations you have to implement is much smaller than the daunting table might suggest.

To support your ALU, we are supplying a simple instruction feeding mechanism which includes a
simple 3-ported register file (a behavioral big brother of beloved Lab 1) and a method for reading
the above ALU instructions from disk. This will interface with your ALU as shown in Figure 1.
You will implement the logic in the grey areas. Your tasks include writing logic to decode the ALU
operations and functions, routing and sign extension of immediate values, choosing applicable
source and destination registers, and performing the correct ALU operation.

Two exceptions should be reported:

• The ALU should assert the “overflowException” line in the case of an integer overflow (only
for instructions which require an overflow check)

• The decoder should raise the “decodeException” line if it sees instructions not listed in
Figure 1

Both lines should be fed into the register file, which will halt the simulation and output the register
file state. For part 1, use behavioral Verilog (e.g., using keywords and operators such as if, assign,
+, -, <<, >>, etc.).

The template for our instruction feeder is available from the following file:

/afs/ece/class/ece347/public_html/LABS/lab2_template.v

ANDI Bitwise AND immediate 0x0c N/A N/A

NOR Logical bitwise NOR 0 0x27 No

OR Logical bitwise OR 0 0x25 No

ORI Bitwise OR immediate 0x0d N/A N/A

SLL Shift left logical 0 0x00 Yes

SRA Shift right arithmetic 0 0x03 Yes

SRL Shift right logical 0 0x02 Yes

SUB Subtract with overflow 0 0x22 No

SUBU Subtract without overflow 0 0x23 No

XOR Logical bitwise XOR 0 0x26 No

XORI Bitwise XOR immediate 0x0e N/A N/A

LUI Load upper immediate 0x0f N/A N/A

Table 1: Instructions supported by your ALU. Instructions ignore fields marked N/A.

Instruction Operation OP Field Funct Field Shamt Field?
2

18-347 Lab 2 Fall 2003
The instruction feeder reads input from a file named ‘memory.dat’. The format of this file is the
binary representation of each MIPS instruction. We have supplied a number of sample test input
files in the lab2_tests/ directory, however your are strongly advised to write more complete test
cases on your own. Our omniscient grading scripts will test operations not covered in the sample
tests.

For hand in, submit your behavioral Verilog files before your lab period.

At the beginning of your lab period, submit a lab report including more diagrams of your ALU,
starting with a diagram similar to Figure 1. Please use a computer to draw your diagram.

Part 2: Structural ALU
Now, armed with the behavioral ALU, you should implement a bitsliced ripple carry adder, logical
operations, and a barrel shifter using structural Verilog (yes, that’s gates, none of the behavioral
constructs from before). The ripple carry adder should be based off full adders, such as the one in
Slide 12 of Lecture 5. The structural barrel shifter can be built out of muxes, and is described in
Lecture 6.

Gates in Verilog default to a zero delay. This is not realistic assumption, particularly since it is
interesting to see exactly how slow the ripple carry adder can be. For this part and part 3, please
use the gate module library in:

/afs/ece/class/ece347/public_html/LABS/lab2_gates.v

for your implementation. This file contains declarations for structural Verilog gates of various
delays and input counts (Yes, more inputs will yield slower gates, and different logic operations
have different delays). The module names are the capitalized version of the gate primitive,
appended with the number of inputs, for example a 3-input AND gate is ‘AND3’. All gates have
parameterizable widths.

Figure 1: The ALU instruction feeder and register file. You will implement
logic in the grey areas

3 23 2
In s tru c tio n

E n d o f F ile

In s tru c tio n

M e m o ry
D e c o d e
C o n tro l

R e g is te r
F ile

rs

r trd

3 2

3 2

3 2

F in is h

re s u lt

in 1

in 2

O p

C lo c k

Y O U R

A L U

o ve rf lo w E x c e p tio n

d e c o d e E xe cp tio n

e n d O fF ile E xc e p tio n
3

18-347 Lab 2 Fall 2003
For hand in, you should submit your structural Verilog files for part 2 before your lab period. At
the beginning of your lab period, you should submit a diagram showing the bitslice unit, how they
connect to form a 32-bit MIPS ALU, logical operation circuits, and a block diagram of your barrel
shifter as part of your report for this lab.

Part 3: Structural ALU
The ripple carry adder has a simple structure, but it does not deliver high performance. In this part,
you will upgrade your ALU with a structural 32-bit carry-lookahead adder, similar to the one
described in Lecture 5. You will have to build upon the 16-bit adder presented there to generate
this adder. Maintain the logical functions (AND, OR, XOR, NOR, shifts) from part 2. No changes
need to be made to your barrel shifter.

For hand in, you should submit your structural Verilog files before your lab period. At the
beginning of your lab period, you should submit a block diagram of your carry lookahead unit as
part of your report for this lab.

Questions
Quantify the size difference between your two adders (ripple carry and carry lookahead). Assume
inverters take one area unit, XOR gates take three area units, and all other gates take one area unit
per input. How long (in time units) are their worst-case critical paths? How do they compare? Show
the critical paths on each adder’s diagram.

Suppose in the future, 32 and 64-bit machines are too small for some blindly optimistic DotCom
companies. Extrapolate the critical path lengths for a 96-bit machine for both types of adders. How
would your barrel shifter’s critical path change? Show your work.

Grading
• Part 1

• Verilog ALU and decoder 10 points
• Block diagram 10 points

• Part 2
• Verilog decode logic 5 points
• Verilog ripple carry adder and logical operations 15 points
• Verilog barrel shifter 10 points
• Block diagram 10 points

• Part 3
• Verilog carry lookahead adder 20 points
• Block diagram 5 points

• Questions 15 points
• Total 100 points
4

18-347 Lab 2 Fall 2003
Late Lab Policy
Late labs and projects will lose 10 points for each day following your assigned lab due date and
time. The clock stops when all lab materials have been turned in (including Verilog code, diagrams,
answers to questions, etc.) and all demos have been completed.
5

	Carnegie Mellon University
	18-347 Introduction to Computer Architecture
	Lab 2: Computer Arithmetic and ALUs
	Due: The week of September 29, 2003 prior to the start of Lab
	(100 points, may be done in groups of two)
	Objective

	In this lab you will implement the internals of an Arithmetic Logic Unit (ALU). You will see the trade-offs in speed and area be...
	Introduction

	One of the main tasks for a microprocessor is to steer instructions into Arithmetic Logic Units (ALUs). The ALUs (and other impo...
	For this lab, you will first implement a simple behavioral Verilog model for the ALU, then you will structurally implement logic...
	Part 1: The Behavioral ALU

	In the first part of this lab, you will build a simple behavioral version of the MIPS ALU. Your ALU should be able to handle the MIPS instructions listed in Table 1.
	HINT: If you are careful with your instruction decode, you only need to implement one decoding block to handle both R and I-form...
	To support your ALU, we are supplying a simple instruction feeding mechanism which includes a simple 3-ported register file (a b...
	Figure 1: The ALU instruction feeder and register file. You will implement logic in the grey areas

	Two exceptions should be reported:
	. The ALU should assert the “overflowException” line in the case of an integer overflow (only for instructions which require an overflow check)
	. The decoder should raise the “decodeException” line if it sees instructions not listed in Figure 1
	Both lines should be fed into the register file, which will halt the simulation and output the register file state. For part 1, use behavioral Verilog (e.g., using keywords and operators such as if, assign, +, -, <<, >>, etc.).
	The template for our instruction feeder is available from the following file:
	The instruction feeder reads input from a file named ‘memory.dat’. The format of this file is the binary representation of each ...
	For hand in, submit your behavioral Verilog files before your lab period.
	At the beginning of your lab period, submit a lab report including more diagrams of your ALU, starting with a diagram similar to Figure 1. Please use a computer to draw your diagram.
	Part 2: Structural ALU

	Now, armed with the behavioral ALU, you should implement a bitsliced ripple carry adder, logical operations, and a barrel shifte...
	Gates in Verilog default to a zero delay. This is not realistic assumption, particularly since it is interesting to see exactly how slow the ripple carry adder can be. For this part and part 3, please use the gate module library in:
	for your implementation. This file contains declarations for structural Verilog gates of various delays and input counts (Yes, m...
	For hand in, you should submit your structural Verilog files for part 2 before your lab period. At the beginning of your lab per...
	Part 3: Structural ALU

	The ripple carry adder has a simple structure, but it does not deliver high performance. In this part, you will upgrade your ALU...
	For hand in, you should submit your structural Verilog files before your lab period. At the beginning of your lab period, you should submit a block diagram of your carry lookahead unit as part of your report for this lab.
	Questions

	Quantify the size difference between your two adders (ripple carry and carry lookahead). Assume inverters take one area unit, XO...
	Suppose in the future, 32 and 64-bit machines are too small for some blindly optimistic DotCom companies. Extrapolate the critic...
	Grading

	. Part 1
	. Verilog ALU and decoder 10 points
	. Block diagram 10 points
	. Part 2
	. Verilog decode logic 5 points
	. Verilog ripple carry adder and logical operations 15 points
	. Verilog barrel shifter 10 points
	. Block diagram 10 points
	. Part 3
	. Verilog carry lookahead adder 20 points
	. Block diagram 5 points
	. Questions 15 points
	. Total 100 points
	Late Lab Policy

	Late labs and projects will lose 10 points for each day following your assigned lab due date and time. The clock stops when all ...

