
18-347 Lab 1 Fall 2003
Carnegie Mellon University
18-347 Introduction to Computer Architecture

Lab 1: Multiported Register Files and State Machines

Due: The week of September 15th, 2003 prior to start of Lab

(100 points)

Fall 2003

Objective
The purpose of this lab is to begin implementing components of your superscalar MIPS processor
core. In particular, this lab involves designing and implementing a multiported register file which
can support concurrent reads and writes from several sequential instructions. This lab also involves
building a simple, but powerful, state machine which will be used in your processor.

Introduction
This lab starts with the implementation of one critical component in your superscalar MIPS
processor core: the register file. The register file is a unit in the processor which supplies the
functional units (ALU, cache write ports) with input operands and stores the results of calculations
and loads for subsequent use. Modern instruction sets typically supply the programmer with 8 - 32
architecturally-visible registers for integer computations.

This lab requires more time than the warmup project from Lab 0, so start early!

Part 1: 3-ported Register File
We went over the internals of a 3-ported register file in 18-240. In this part of Lab 1, you will
implement a small register file for the MIPS processor that is suitable for executing one instruction
at a time (similar to the classical MIPS R2000 processor). To support a single instruction, the
register file must allow two concurrent reads and one write. You are to design, implement and test
a register file in structural Verilog (the storage registers may be described by ‘include’ing the
behavioral Verilog file /afs/ece/class/ece347/LABS/components/dreg.v). The register file should
have the following characteristics:

• Inputs: Two 5-bit source register numbers (one for each read port), one 5-bit destination
register number (for the write port), one 32-bit wide data port for writes, one write enable
signal, clock, and reset

• Outputs: Two 32-bit register values, one for each of the read ports
• When a source register number equals the destination register number, the register file

should always output the current value of the addressed D-flip-flop (which may change when
the new value is clocked in)

• Register zero ($0) should always return a value of zero when read. No state should change if
1

18-347 Lab 1 Fall 2003
an instruction specifies $0 as a destination register

For handin, you must include a block diagram of your register file implementation (including
major units such as muxes, register arrays, data path and control path logic, etc....). Hand in the
Verilog code for your register file, your Verilog test cases, and annotated input/output waveforms
from your tests (annotations should explain what test case accomplishes).

Part 2: A 6-ported Register File
To support superscalar execution (multiple instructions executing in parallel), the register file must
be able to supply enough operands for all of the executing instructions. Your superscalar MIPS
core will eventually execute up to two instructions every cycle, requiring four register read ports
and two independent register write reports.

Build upon your register file from the previous part by adding two more read ports and one write
port (don’t forget to save a copy of the previous part separately!). You should be careful to assign
each port to a specific instruction (first or second); order does matter and the ports are not created
equal! Because you are now supporting two instructions which should execute sequentially (this
means the programmer expects to see one instruction fully completed before starting the next
instruction), some troublesome corner cases — known officially as hazards — must be detected.

1) Consider the following code sequence:

R3 <- R1 + R2

R5 <- R3 + R4

If these two instructions were executed simultaneously, it is possible for the second instruction to
receive an old value for R3 if it reads the register before R3 has been written by the first instruction
(that’s a Bad Thing!). We will give a more formal discussion of this later in the course. For now,
it is sufficient to flag a data hazard where the later instruction uses the earlier instruction’s result
by asserting a special single bit error output line from your register file. The state of the register
file is undefined after this point.

2) Another situation can occur when two sequential instructions write to the same register:

R3 <- R1 + R2

R3 <- R4 + R5

If both instructions executed without causing an exception (e.g., an illegal divide by zero), this
situation is permissible. To make the processor simpler in later projects, we will also forbid this
situation. An error should also be flagged and the state of the register file is undefined. This error
signal will be helpful later when debugging your processor pipeline.

For hand-in, you must include a block diagram of your register file implementation, the structural
Verilog code for your register file, your Verilog test cases,. and the annotated input/output
waveforms from your tests.
2

18-347 Lab 1 Fall 2003
Part 3: Finite State Machines
As you will learn later in 18-347, two-bit saturating counters are used in structures throughout
computer architecture. For instance, the repetitive behavior of branches can be predicted quite
accurately with an array of two-bit saturating counters.

Design and implement a Moore state machine for a two-bit saturating up-down counter in
structural Verilog, using the behavioral D-flip-flop from Part 1. The counter should increment or
decrement, depending upon the current state and an input signal. Since it is a saturating counter,
when the highest and lowest states are reached, the counter must stay in that state until the
increment input is inverted. The counter should have the following inputs:

• Clock
• Reset
• Enable: only change counter values when asserted
• Increment: increment when asserted, otherwise decrement

Output the current value of the counter.

For handin, include your state diagrams, Verilog code, test cases, and input and output waveforms
demonstrating that your counter operates correctly.

Questions
Explain the difference in design complexity between your 3-ported and 6-ported register files. In
Verilog, was the 6-ported register file harder to for you design and test? Why?

Modern register files may have several times as many ports and registers as the one in this project.
Is it more difficult to scale by adding more ports or increasing the register count? Why?

Handin
Verilog code and test cases should be handed in electronically on AFS before your assigned lab
period on the week of September 15. Please copy your Verilog files to:

/afs/ece/class/ece347/handin/ece_username/lab1

Hand in your waveform output, diagrams, and answers to the questions at the beginning of your
assigned lab period in HH1107 on the week of September 15. Since this lab may be done in pairs,
only one copy needs to be turned in. Please use one handin directory and place a file named
usernames.txt in the directory, listing both people who worked on the lab.
3

18-347 Lab 1 Fall 2003
Grading
• Part 1

• Register file block diagram 10 points
• Verilog code 15 points
• Verilog test cases 10 points

• Part 2
• Register file block diagram 10 points
• Verilog code 20 points
• Verilog test cases 10 points

• Part 3
• State diagram 5 points
• Verilog code 5 points
• Test cases 5 points

• Questions 10 points
• Total 100 points
4

	Carnegie Mellon University
	18-347 Introduction to Computer Architecture
	Lab 1: Multiported Register Files and State Machines
	Due: The week of September 15th, 2003 prior to start of Lab
	(100 points)
	Fall 2003
	Objective

	The purpose of this lab is to begin implementing components of your superscalar MIPS processor core. In particular, this lab inv...
	Introduction

	This lab starts with the implementation of one critical component in your superscalar MIPS processor core: the register file. Th...
	This lab requires more time than the warmup project from Lab 0, so start early!
	Part 1: 3-ported Register File

	We went over the internals of a 3-ported register file in 18-240. In this part of Lab 1, you will implement a small register fil...
	. Inputs: Two 5-bit source register numbers (one for each read port), one 5-bit destination register number (for the write port), one 32-bit wide data port for writes, one write enable signal, clock, and reset
	. Outputs: Two 32-bit register values, one for each of the read ports
	. When a source register number equals the destination register number, the register file should always output the current value of the addressed D-flip-flop (which may change when the new value is clocked in)
	. Register zero ($0) should always return a value of zero when read. No state should change if an instruction specifies $0 as a destination register
	For handin, you must include a block diagram of your register file implementation (including major units such as muxes, register...
	Part 2: A 6-ported Register File

	To support superscalar execution (multiple instructions executing in parallel), the register file must be able to supply enough ...
	Build upon your register file from the previous part by adding two more read ports and one write port (don’t forget to save a co...
	1) Consider the following code sequence:
	If these two instructions were executed simultaneously, it is possible for the second instruction to receive an old value for R3...
	2) Another situation can occur when two sequential instructions write to the same register:
	If both instructions executed without causing an exception (e.g., an illegal divide by zero), this situation is permissible. To ...
	For hand-in, you must include a block diagram of your register file implementation, the structural Verilog code for your register file, your Verilog test cases,. and the annotated input/output waveforms from your tests.
	Part 3: Finite State Machines

	As you will learn later in 18-347, two-bit saturating counters are used in structures throughout computer architecture. For instance, the repetitive behavior of branches can be predicted quite accurately with an array of two-bit saturating counters.
	Design and implement a Moore state machine for a two-bit saturating up-down counter in structural Verilog, using the behavioral ...
	. Clock
	. Reset
	. Enable: only change counter values when asserted
	. Increment: increment when asserted, otherwise decrement
	Output the current value of the counter.
	For handin, include your state diagrams, Verilog code, test cases, and input and output waveforms demonstrating that your counter operates correctly.
	Questions

	Explain the difference in design complexity between your 3-ported and 6-ported register files. In Verilog, was the 6-ported register file harder to for you design and test? Why?
	Modern register files may have several times as many ports and registers as the one in this project. Is it more difficult to scale by adding more ports or increasing the register count? Why?
	Handin

	Verilog code and test cases should be handed in electronically on AFS before your assigned lab period on the week of September 15. Please copy your Verilog files to:
	Hand in your waveform output, diagrams, and answers to the questions at the beginning of your assigned lab period in HH1107 on t...
	Grading

	. Part 1
	. Register file block diagram 10 points
	. Verilog code 15 points
	. Verilog test cases 10 points
	. Part 2
	. Register file block diagram 10 points
	. Verilog code 20 points
	. Verilog test cases 10 points
	. Part 3
	. State diagram 5 points
	. Verilog code 5 points
	. Test cases 5 points
	. Questions 10 points
	. Total 100 points

