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Announcements & Readings

Homework 5 will be posted today

Talk at Intel this Friday
Can Parallel Computing Finally Impact Mainstream 

Computing?
Uzi Vishkin, University of Maryland

(10:30am @ Intel Research Pittsburgh) 

Chapter 6 of the book
Alan Charlesworth, StarFire: Extending the SMP Envelope, 

IEEE Micro, Jan. 1998. 
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Implementing a Centralized Barrier

BARRIER(bar_name, p) {
LOCK(bar_name.lock);
if (bar_name.counter = 0)

bar_name.flag = 0;
bar_name.counter++;
UNLOCK(bar_name.lock);
if (bar_name.counter == p) {

bar_name.counter = 0;
bar_name.flag = 1;

}
else

while(bar_name.flag = 0) {}; /* busy wait */
}

• Does this work?
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Barrier With Sense Reversal

BARRIER(bar_name, p) {
local_sense = !(local_sense); /* toggle private state */
LOCK(bar_name.lock);
bar_name.counter++;
UNLOCK(bar_name.lock);
if (bar_name.counter == p) {

bar_name.counter = 0;
bar_name.flag = local_sense;

}
else

while(bar_name.flag != local_sense) {}; /* busy wait */
}
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Synchronization Algorithms

• Tournament Barriers, SW Combining Tree

p1 p2 p3 p4

Pessimistic

Optimistic
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Review: Symmetric Multiprocesors (SMP)

• Multiple (micro-)processors

• Each has cache (today a cache hierarchy)

• Connect with logical bus (totally-ordered broadcast)

• Implement Snooping Cache Coherence Protocol
– Broadcast all cache “misses” on bus
– All caches “snoop” bus and may act
– Memory responds otherwise
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Review: Snoopy Design Choices

Processor
ld/st

Snoop (observed bus transaction)

State Tag Data

. . .

• Controller updates state of 
blocks in response to processor 
and snoop events and 
generates bus xactions

• Often have duplicate cache tags
• Snoopy protocol

– set of states
– state-transition diagram
– actions

• Basic Choices
– write-through vs. write-back
– invalidate vs. update

Cache
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Review: MSI State Diagram
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But in More Detail ...

• How does memory know another cache will respond 
so it need not?

• Is it okay a cache miss is not an atomic event
(check tags, queue for bus, get bus, etc.)?

• What about L1/L2 caches & split transactions buses?

• Is deadlock a problem?

• What happens on a PTE update with multiple TLBs?

• Can one use virtual caches in SMPs?
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Outline

• Coherence Control Implementation

• Writebacks, Non-Atomicity, & Serialization/Order

• Hierarchical Cache

• Split Buses

• Deadlock, Livelock, & Starvation

• Three Case Studies

• TLB Coherence

• Virtual Cache Issues
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Snooping SMP Design Goals

• Goals
– Correctness
– High Performance
– Minimal Hardware => reduced complexity & cost

• Often at odds
– High Performance

=> multiple outstanding low-level events
=> more complex interactions
=> more potential correctness bugs 
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Base Cache Coherence Design

• Single-level write-back cache
• Invalidation protocol
• One outstanding memory request per processor
• Atomic memory bus transactions

– no interleaving of  transactions 

• Atomic operations within process
– one finishes before next in program order

• Examine write serialization, completion, 
atomicity

• Then add more concurrency and re-examine



Page 7

18-742 13
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Cache Controller and Tags

• On a miss in uniprocessor:
– Assert request for bus
– Wait for bus grant
– Drive address and command lines
– Wait for command to be accepted by relevant device
– Transfer data

• In snoop-based multiprocessor, cache controller must: 
– Monitor bus and processor

» Can view as two controllers: bus-side, and processor-side
» With single-level cache: dual tags (not data) or dual-ported tag RAM
» synchronize on updates

– Respond to bus transactions when necessary
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Reporting Snoop Results: How?

• Collective response from caches must appear on bus
• Wired-OR signals

– Shared: asserted if any cache has a copy
– Dirty/Inhibit: asserted if some cache has a dirty copy

» needn’t know which, since it will do what’s necessary
– Snoop-valid: asserted when OK to check other two signals

• May require priority scheme for cache-to-cache 
transfers

– Which cache should supply data when in shared state?
– Commercial implementations allow memory to provide data
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Reporting Snoop Results: When?

• Memory needs to know what, if anything, to do

• Fixed number of clocks from address appearing on 
bus

– Dual tags required to reduce contention with processor
– Still must be conservative (update both on write: E -> M)
– Pentium Pro, HP servers, Sun Enterprise

• Variable delay
– Memory assumes cache will supply data till all say “sorry”
– Less conservative, more flexible, more complex
– Memory can fetch data early and hold (SGI Challenge)

• Immediately: Bit-per-block in memory
– H/W complexity in commodity main memory system
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Writebacks

• Must allow processor to proceed on a miss
– fetch the block
– perform writeback later

• Need writebuffer
– Must handle bus transactions in write buffer
– Snoop writebuffer
– Must care about the order of reads and writes
– Revisit in Adve’s tutorial
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Base Organization

Addr CmdSnoop state Data buffer

Write-back buffer

Cache data RAM

Comparator

Comparator

P

Tag

Addr Cmd

Data
Addr Cmd

To
controller

System bus

Bus-
side

controller
To
controller

Tags
and
state
for
snoop

Tags
and
state
for
P

Processor-
side

controller
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Non-Atomic State Transitions

• Operations involve multiple actions 
– Look up cache tags
– Bus arbitration
– Check for writeback
– Even if bus is atomic, overall set of actions is not
– Race conditions among multiple operations

• Suppose P1 and P2 attempt to write cached block A
– Each decides to issue BusUpgr to allow S –> M

• Issues
– Handle requests for other blocks while waiting to acquire bus 
– Must handle requests for this block A
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Non-Atomicity =>Transient States

Two types of states
• Stable (e.g. MESI)
• Transient or Intermediate

Increases complexity
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Serialization and Ordering

Let A and flag be 0

P1 P2
A += 5 while (flag == 0)
flag = 1 print A

• Assume A and flag are in different cache blocks
• What happens?
• How do you implement it correctly?
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Serialization and Ordering

• Processor-cache handshake must preserve 
serialization 

• e.g. write to S state=> first obtain ownership
• why?
• Write completion for SC => need bus invalidation: 

– Wait to get bus, can proceed afterwards

• Must serialize bus operations in program order
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Multi-level Cache Hierarchies

• How to snoop with multi-level caches?
– independent bus snooping at every level?
– maintain cache inclusion

• Requirements for Inclusion
– data in higher-level is subset of data in lower-level 
– modified in higher-level => marked modified in lower-level

• Now only need to snoop lowest-level cache
– If L2 says not present (modified), then not so in L1

• Is inclusion automatically preserved
– Replacements: all higher-level misses go to lower level
– Modifications



Page 12

18-742 23
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Violations of Inclusion

• The two caches (L1, L2) may choose to replace different 
block

Example:  Local LRU not sufficient
Assume that L1 and L2 hold two and three blocks and both 
use local LRU
Processor references:  1, 2, 1, 3, 1, 4

Final contents of L1:  1, 4
L1 misses:  1, 2, 3, 4

Final contents of L2:  2, 3, 4, but not 1
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Violations of Inclusion

• Split higher-level caches
– instruction, data blocks go in different caches at L1, but collide in L2

• Differences in Associativity
– What if L1 is set-associative and L2 is direct-mapped?

• Differences in block size

– Blocks in two L1 sets may both map to same L2 set

• But a common case works automatically
– L1 direct-mapped, fewer sets than in L2, and block size same
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Inclusion to be or not to be

• Most common inclusion solution
– Ensure L2 holds superset of L1I and L1D
– On L2 replacement or coherence request that must source data or 

invalidate, forward actions to L1 caches
– Can maintain bits in L2 cache to filter some actions from forwarding
– virtual L1 / physical [Wang, et al., ASPLOS87]
–

• But
– Restricted associativity in unified L2 can limit blocks in split L1’s
– “Backside” L2  (bus-L1-processor-L2) makes filtering awkward
– Not that hard to always snoop L1’s

• Thus, many new designs don’t maintain inclusion
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Shared Caches

• Share low level caches among multiple processors
– Sharing L1 adds to latency, unless multithreaded processor

• Advantages
– Eliminates need for coherence protocol at shared level
– Reduces latency within sharing group
– Processors essentially prefetch for each other
– Can exploit working set sharing
– Increases utilization of cache hardware

• Disadvantages
– Higher bandwidth requirements
– Increased hit latency
– May be more complex design
– Lower effective capacity if working sets don’t overlap

• Bottom Line
– Packaging has a lot to do with it
– As levels of integrations increase, there will be more sharing
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Split-transaction (Pipelined) Bus

• Supports multiple simultaneous transactions (many 
designs)

Req
Delay

Response

Atomic Transaction Bus

Split-transcation Bus
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Potential Problems

• Two transactions to same block (conflicting) 
– Mid-transaction snoop hits

• Buffer requests and responses
– Need flow control to prevent deadlock

• Ordering of Snoop responses
– when does snoop response appear wrt data response
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One Solution

• NACK for flow control
• Out-of-order responses

– snoop results presented with data response

• Disallow conflicting transactions
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A Split-transaction Bus Design

• 4 Buses + Flow Control and Snoop Results
– Command (type of xaction)
– Address
– Tag (unique identifier for response)
– Data (doesn’t require address)

• Form of transactions
– BusRD, BusRDX (request + response)
– Writeback (request + data)
– Upgrade (request only)

• Per Processor Request Table Tracks All Transactions
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A Simple Example

4,x 4,x 4,xld x ld xst x

P2 Can snoop data from first ld
P1 Must hold st operation until entry is clear

P0 P1 P2
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Multi-Level Caches with Split Bus

Response Processor request

Request/response
to bus

L1 $

L2 $

1

27

8

Processor

Bus

L1 $

L2 $

5

63

4

Processor

Response/
request
from bus
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Response/
request
from L1 to L2
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Multi-level Caches with Split-Transaction Bus

• General structure uses queues between
– Bus and L2 cache
– L2 cache and L1 cache

• Deadlock!
• Classify all transactions

– Request, only generates responses
– Response, doesn’t generate any other transactions

• Requestor guarantees space for all responses
• Use Separate Request and Response queues


