
Page 1

18-742
Lecture 9

Symmetric
Multiprocessors II
Spring 2005
Prof. Babak Falsafi
http://www.ece.cmu.edu/~ece742

Slides developed in part by Profs. Adve, Falsafi, Hill, Slides developed in part by Profs. Adve, Falsafi, Hill, LebeckLebeck, Reinhardt, , Reinhardt,
Smith, and Singh of University of Illinois, Carnegie Mellon UnivSmith, and Singh of University of Illinois, Carnegie Mellon University, ersity,
University of Wisconsin, Duke University, University of MichiganUniversity of Wisconsin, Duke University, University of Michigan, and , and
Princeton University.Princeton University.

PrWr/—

BusGrant/BusUpgr

BusRd/Flush

BusGrant/

BusRdX/Flush

BusGrant/BusRdX

PrRd/BusReq

PrWr/—

PrRd/—

PrRd/—
BusRd/Flush′

E

M

I

S

PrRd/—

BusRd (S)

PrWr/BusReq

I → M

S → M

PrWr/
BusReq

BusRdX/Flush′

I → S,E

BusRdX/Flush

BusRdX/Flush′

BusGrant/
BusRd (S) BusRd/Flush

18-742 2
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Announcements & Readings

Homework 5 will be posted today

Talk at Intel this Friday
Can Parallel Computing Finally Impact Mainstream

Computing?
Uzi Vishkin, University of Maryland

(10:30am @ Intel Research Pittsburgh)

Chapter 6 of the book
Alan Charlesworth, StarFire: Extending the SMP Envelope,

IEEE Micro, Jan. 1998.

Page 2

18-742 3
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Implementing a Centralized Barrier

BARRIER(bar_name, p) {
LOCK(bar_name.lock);
if (bar_name.counter = 0)

bar_name.flag = 0;
bar_name.counter++;
UNLOCK(bar_name.lock);
if (bar_name.counter == p) {

bar_name.counter = 0;
bar_name.flag = 1;

}
else

while(bar_name.flag = 0) {}; /* busy wait */
}

• Does this work?

18-742 4
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Barrier With Sense Reversal

BARRIER(bar_name, p) {
local_sense = !(local_sense); /* toggle private state */
LOCK(bar_name.lock);
bar_name.counter++;
UNLOCK(bar_name.lock);
if (bar_name.counter == p) {

bar_name.counter = 0;
bar_name.flag = local_sense;

}
else

while(bar_name.flag != local_sense) {}; /* busy wait */
}

Page 3

18-742 5
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Synchronization Algorithms

• Tournament Barriers, SW Combining Tree

p1 p2 p3 p4

Pessimistic

Optimistic

18-742 6
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Review: Symmetric Multiprocesors (SMP)

• Multiple (micro-)processors

• Each has cache (today a cache hierarchy)

• Connect with logical bus (totally-ordered broadcast)

• Implement Snooping Cache Coherence Protocol
– Broadcast all cache “misses” on bus
– All caches “snoop” bus and may act
– Memory responds otherwise

Page 4

18-742 7
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Review: Snoopy Design Choices

Processor
ld/st

Snoop (observed bus transaction)

State Tag Data

. . .

• Controller updates state of
blocks in response to processor
and snoop events and
generates bus xactions

• Often have duplicate cache tags
• Snoopy protocol

– set of states
– state-transition diagram
– actions

• Basic Choices
– write-through vs. write-back
– invalidate vs. update

Cache

18-742 8
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Review: MSI State Diagram

PrRd /--

M

BusRdX / BusWB
PrWr / BusRdX

S

I

PrWr / --

BusRd / BusWBPrWr / BusRdX

PrRd / BusRd
BusRdX / --

PrRd / --
BusRd / --

Page 5

18-742 9
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

But in More Detail ...

• How does memory know another cache will respond
so it need not?

• Is it okay a cache miss is not an atomic event
(check tags, queue for bus, get bus, etc.)?

• What about L1/L2 caches & split transactions buses?

• Is deadlock a problem?

• What happens on a PTE update with multiple TLBs?

• Can one use virtual caches in SMPs?

18-742 10
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Outline

• Coherence Control Implementation

• Writebacks, Non-Atomicity, & Serialization/Order

• Hierarchical Cache

• Split Buses

• Deadlock, Livelock, & Starvation

• Three Case Studies

• TLB Coherence

• Virtual Cache Issues

Page 6

18-742 11
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Snooping SMP Design Goals

• Goals
– Correctness
– High Performance
– Minimal Hardware => reduced complexity & cost

• Often at odds
– High Performance

=> multiple outstanding low-level events
=> more complex interactions
=> more potential correctness bugs

18-742 12
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Base Cache Coherence Design

• Single-level write-back cache
• Invalidation protocol
• One outstanding memory request per processor
• Atomic memory bus transactions

– no interleaving of transactions

• Atomic operations within process
– one finishes before next in program order

• Examine write serialization, completion,
atomicity

• Then add more concurrency and re-examine

Page 7

18-742 13
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Cache Controller and Tags

• On a miss in uniprocessor:
– Assert request for bus
– Wait for bus grant
– Drive address and command lines
– Wait for command to be accepted by relevant device
– Transfer data

• In snoop-based multiprocessor, cache controller must:
– Monitor bus and processor

» Can view as two controllers: bus-side, and processor-side
» With single-level cache: dual tags (not data) or dual-ported tag RAM
» synchronize on updates

– Respond to bus transactions when necessary

18-742 14
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Reporting Snoop Results: How?

• Collective response from caches must appear on bus
• Wired-OR signals

– Shared: asserted if any cache has a copy
– Dirty/Inhibit: asserted if some cache has a dirty copy

» needn’t know which, since it will do what’s necessary
– Snoop-valid: asserted when OK to check other two signals

• May require priority scheme for cache-to-cache
transfers

– Which cache should supply data when in shared state?
– Commercial implementations allow memory to provide data

Page 8

18-742 15
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Reporting Snoop Results: When?

• Memory needs to know what, if anything, to do

• Fixed number of clocks from address appearing on
bus

– Dual tags required to reduce contention with processor
– Still must be conservative (update both on write: E -> M)
– Pentium Pro, HP servers, Sun Enterprise

• Variable delay
– Memory assumes cache will supply data till all say “sorry”
– Less conservative, more flexible, more complex
– Memory can fetch data early and hold (SGI Challenge)

• Immediately: Bit-per-block in memory
– H/W complexity in commodity main memory system

18-742 16
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Writebacks

• Must allow processor to proceed on a miss
– fetch the block
– perform writeback later

• Need writebuffer
– Must handle bus transactions in write buffer
– Snoop writebuffer
– Must care about the order of reads and writes
– Revisit in Adve’s tutorial

Page 9

18-742 17
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Base Organization

Addr CmdSnoop state Data buffer

Write-back buffer

Cache data RAM

Comparator

Comparator

P

Tag

Addr Cmd

Data
Addr Cmd

To
controller

System bus

Bus-
side

controller
To
controller

Tags
and
state
for
snoop

Tags
and
state
for
P

Processor-
side

controller

18-742 18
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Non-Atomic State Transitions

• Operations involve multiple actions
– Look up cache tags
– Bus arbitration
– Check for writeback
– Even if bus is atomic, overall set of actions is not
– Race conditions among multiple operations

• Suppose P1 and P2 attempt to write cached block A
– Each decides to issue BusUpgr to allow S –> M

• Issues
– Handle requests for other blocks while waiting to acquire bus
– Must handle requests for this block A

Page 10

18-742 19
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Non-Atomicity =>Transient States

Two types of states
• Stable (e.g. MESI)
• Transient or Intermediate

Increases complexity

P r W r /—

B u s G r a n t /B u s U p g r

B u s R d /F lu s h

B u s G r a n t /

B u s R d X / F lu s h

B u s G r a n t / B u s R d X

P r R d /B u s R e q

P r W r /—

P r R d / —

P r R d /—
B u s R d /F l u s h′

E

M

I

S

P r R d / —

B u s R d (S)

P r W r /B u s R e q

I → M

S → M

P r W r /
B u s R e q

B u s R d X /F l u s h′

I → S ,E

B u s R d X /F lu s h

B u s R d X /F lu s h′

B u s G r a n t /
B u s R d (S) B u s R d /F l u s h

18-742 20
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Serialization and Ordering

Let A and flag be 0

P1 P2
A += 5 while (flag == 0)
flag = 1 print A

• Assume A and flag are in different cache blocks
• What happens?
• How do you implement it correctly?

Page 11

18-742 21
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Serialization and Ordering

• Processor-cache handshake must preserve
serialization

• e.g. write to S state=> first obtain ownership
• why?
• Write completion for SC => need bus invalidation:

– Wait to get bus, can proceed afterwards

• Must serialize bus operations in program order

18-742 22
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Multi-level Cache Hierarchies

• How to snoop with multi-level caches?
– independent bus snooping at every level?
– maintain cache inclusion

• Requirements for Inclusion
– data in higher-level is subset of data in lower-level
– modified in higher-level => marked modified in lower-level

• Now only need to snoop lowest-level cache
– If L2 says not present (modified), then not so in L1

• Is inclusion automatically preserved
– Replacements: all higher-level misses go to lower level
– Modifications

Page 12

18-742 23
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Violations of Inclusion

• The two caches (L1, L2) may choose to replace different
block

Example: Local LRU not sufficient
Assume that L1 and L2 hold two and three blocks and both
use local LRU
Processor references: 1, 2, 1, 3, 1, 4

Final contents of L1: 1, 4
L1 misses: 1, 2, 3, 4

Final contents of L2: 2, 3, 4, but not 1

18-742 24
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Violations of Inclusion

• Split higher-level caches
– instruction, data blocks go in different caches at L1, but collide in L2

• Differences in Associativity
– What if L1 is set-associative and L2 is direct-mapped?

• Differences in block size

– Blocks in two L1 sets may both map to same L2 set

• But a common case works automatically
– L1 direct-mapped, fewer sets than in L2, and block size same

Page 13

18-742 25
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Inclusion to be or not to be

• Most common inclusion solution
– Ensure L2 holds superset of L1I and L1D
– On L2 replacement or coherence request that must source data or

invalidate, forward actions to L1 caches
– Can maintain bits in L2 cache to filter some actions from forwarding
– virtual L1 / physical [Wang, et al., ASPLOS87]
–

• But
– Restricted associativity in unified L2 can limit blocks in split L1’s
– “Backside” L2 (bus-L1-processor-L2) makes filtering awkward
– Not that hard to always snoop L1’s

• Thus, many new designs don’t maintain inclusion

18-742 26
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Shared Caches

• Share low level caches among multiple processors
– Sharing L1 adds to latency, unless multithreaded processor

• Advantages
– Eliminates need for coherence protocol at shared level
– Reduces latency within sharing group
– Processors essentially prefetch for each other
– Can exploit working set sharing
– Increases utilization of cache hardware

• Disadvantages
– Higher bandwidth requirements
– Increased hit latency
– May be more complex design
– Lower effective capacity if working sets don’t overlap

• Bottom Line
– Packaging has a lot to do with it
– As levels of integrations increase, there will be more sharing

Page 14

18-742 27
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Split-transaction (Pipelined) Bus

• Supports multiple simultaneous transactions (many
designs)

Req
Delay

Response

Atomic Transaction Bus

Split-transcation Bus

18-742 28
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Potential Problems

• Two transactions to same block (conflicting)
– Mid-transaction snoop hits

• Buffer requests and responses
– Need flow control to prevent deadlock

• Ordering of Snoop responses
– when does snoop response appear wrt data response

Page 15

18-742 29
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

One Solution

• NACK for flow control
• Out-of-order responses

– snoop results presented with data response

• Disallow conflicting transactions

18-742 30
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

A Split-transaction Bus Design

• 4 Buses + Flow Control and Snoop Results
– Command (type of xaction)
– Address
– Tag (unique identifier for response)
– Data (doesn’t require address)

• Form of transactions
– BusRD, BusRDX (request + response)
– Writeback (request + data)
– Upgrade (request only)

• Per Processor Request Table Tracks All Transactions

Page 16

18-742 31
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

A Simple Example

4,x 4,x 4,xld x ld xst x

P2 Can snoop data from first ld
P1 Must hold st operation until entry is clear

P0 P1 P2

18-742 32
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Multi-Level Caches with Split Bus

Response Processor request

Request/response
to bus

L1 $

L2 $

1

27

8

Processor

Bus

L1 $

L2 $

5

63

4

Processor

Response/
request
from bus

Response/
request
from L2 to L1

Response/
request
from L1 to L2

Page 17

18-742 33
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Multi-level Caches with Split-Transaction Bus

• General structure uses queues between
– Bus and L2 cache
– L2 cache and L1 cache

• Deadlock!
• Classify all transactions

– Request, only generates responses
– Response, doesn’t generate any other transactions

• Requestor guarantees space for all responses
• Use Separate Request and Response queues

