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Homework 1

* Due by Friday

« Homework 2 assigned on Friday
— Parallel programming homework
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Readings

* From Reader 2
— Chapter 3

— P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso,
Performance of Database Workloads on Shared-Memory Systems
with Out-of-Order Processors, ASPLOS 1998.

— A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore, M. Xu, D.
J. Sorin, M. D. Hill, and D. A. Wood, Simulating a $2M Commercial
Server on a $2K PC, IEEE Computer, February 2003.

— A. R. Alameldeen and D. A. Wood, Variability in Architectural
Simulations of Multi-threaded Workloads, HPCA 2003.
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Parallel Programming

To understand and evaluate
design decisions in a parallel machine,
we must get an idea of the software
that runs on a parallel machine.

--Introduction to Culler et al.’s Chapter 2,
beginning 192 pages on software
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Outline

Review

Applications

Creating Parallel Programs

Programming for Performance

Scaling
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Review: Separation of Model and Architecture

+ Shared Memory
— Single shared address space
— Communicate, synchronize using load / store
— Can support message passing

* Message Passing
— Send / Receive
— Communication + synchronization
— Can support shared memory

+ Data Parallel
— Lock-step execution on regular data structures
— Often requires global operations (sum, max, min...)
— Can support on either SM or MP
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Review: A Generic Parallel Machine

» Separation of

RIS Node | programming
® — Mem ®) Memn models from
B B architectures
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require
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—{cal memory,
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Review: Fundamental Architectural Issues

* Naming: How is communicated data and/or partner
node referenced?

* Operations: What operations are allowed on named
data?

» Ordering: How can producers and consumers of data
coordinate their activities?

* Performance

— Latency: How long does it take to communicate in a protected
fashion?

— Bandwidth: How much data can be communicated per second?
How many operations per second?
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Applications

N-Body Simulation: Barnes-Hut

* Ocean Current Simulation: Ocean
VLSI Routing: Locus Route

* Ray Tracing

— Shoot Ray through three dimensional scene (let it bounce off

objects)

+ Data Mining

— finding associations

— Consumers that are college students, and buy beer, tend to buy

chips
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+ Computing the mutual interactions of N bodies
— n-body problems
— stars, planets, molecules...

« Can approximate influence of distant bodies
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Ocean
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000000
000000

Ocean Basin

+ Simulate ocean currents
 discretize in space and time

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 11

Creating a Parallel Program

+ Can be done by programmer, compiler, run-time
system or OS

+ A Task is a piece of work
— Ocean: grid point, row, plane
— Raytrace: 1 ray or group of rays
+ Task grain
— small => fine-grain task
— large => course-grain task
* Process (thread) performs tasks
— According to OS: process = thread(s) + address space

* Process (threads) executed on processor(s)
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Example: Ocean

(O ONORE®)
(O ONOR®)
(O ONOR®)
(O ONOR®)
(O ONOR®)

Equation Solver
— kernel = small piece of important code (Not OS kernel...)

+ Update each point based on NEWS neighbors

— Gauss-Seidel (update in place)
+ Compute average difference per element
+ Convergence when diff small => exit

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742

Equation Solver Decomposition

while Iconverged
for
for

* The loops are not independent!
» Exploit properties of problem

— Don't really need up-to-date values (approximation)
— May take more steps to converge, but exposes parallelism
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Sequential Solver

* Recurrence in Inner Loop

10. procedure Solve (A} *solve the equation system*/
ii. float **A; A isan (n+ 2)-by-(n + 2} array*/
12. begin
13. int i, j, done = 0;
14. float diff = 0, temp;
15. while {!done) do [Foutermost Ioopoversweeps*f
16. diff = 0; I*initialize maximum difference to 0%/
17. for i « 1 ton do [*sweep over nonborder points of grid*/
18. for § &« 1 ton do
19. temp = Ali,j]; I*save old value of element*/
20. Ali,3) « 0.2 * {A[i,§] + Ali,3-1] + Ali-1,31 +
21. A[i,3+1] + A[i+1,3]); /*compute average*/
22. diff += abs(A[i,]j] - temp);
23. end for
24, end for
25. if {diff,{{nxn} < TOLI then donecgpyan\HQQQMorgan Kaufmann Publishers, Inc
26. end while ¢
27. end procedure
(C) 4ZUVU0 Davak ramdxall 1ol AUve, ramaltl,
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Parallel Solver
» ldentical computation as Original Code
« Parallelism along anti-diagonal
+ Different degrees of parallelism as diagonal
grows/shrinks
20> >0 "
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copyright 1999 Morgan Kaufmann Publishers, Inc
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The FORALL Statement

while !converged
forall
forall

+ Can execute the iterations in parallel

« Each grid point computation (n? parallelism)
while Iconverged
forall
for

+ Computation for rows is independent (n parallelism)
— less overhead
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Asynchronous Parallel Solver
Each processor updates its region independent of other’s values
» Global synch at end of iteration, to keep things somewhat up-to-date
* non-deterministic
15. while (!done) do /*a sequential loop*/
16. diff = 0;
17. for all i « 1 to n do /*a parallel loop nest*/
18. for all j <« 1 to n do
19. temp = A[i,j];
20. Afi,j] « 0.2 * (A[i,F] + A[L,3-1]1 + A[i-1,3] +
21. Ali,j+1] + A[i+l,3]1);
22. diff += abs{A[i,j] - temp);
23. end for all
24. end for all
25. if (diff/(n*n) < TOL) then done = 1;
26. end while copyright 1999 Morgan Kaufmann Publishers, Inc
(C) 2005 Babak Falsafi from Adve, Falsafi,
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Red-Black Parallel Solver

* Red-Black
— like checkerboard update of Red point depends only on Black points
— alternate iterations over red, then black
— but convergence may change
— deterministic

® O ® O ® O ® O @ O
O ® © @O0 ® O ® O e O Red point
®e O e O ® C ® O @ O ® 5k pont
O ® O @ O ® 0 @ O e
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O @ 0O @ 0O @ O ® O @
copyright 1999 Morgan Kaufmann Publishers, Inc
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PARMACS

* Macro Package, runtime system must implement

— portability

CREATE(p,proc,args) Create p processes executing proc(args)

G_MALLOC(size) Allocate shared data of size bytes

LOCK(name)

UNLOCK(name)

BARRIER(name,number) Wait for number processes to arrive

WAIT_FOR_END(number) Wait for number processes to terminate

WAIT (flag) while(!flag);

SIGNAL(flag) flag = 1;
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Shared Memory Programming

10. procedure Solve(hl

11. float **A; A Is entire n+2-by-n+2 shared array,
as in the sequential program*/

12. begin

13. int i,3, pid, done = 0;

14. float temp, mydiff = 0; {*private variables® /

14a. int mymin = 1 + (pid * n/nprocs);
14bk. int mymax = mymin + n/nprocs - 1

assume that n is exactly divisible by */
S*nprocs for simplicity here*/

15. while {ldone) do *outer loop over all diagonal elements®S

16. mydiff = diff = 0 J*set global diff 10 0 {okay for all to do it)*/

16a. BARRIER{barl, nprocs)j; #*ensure all reach here before anyone modifies diff*/
17. for i + mymin to mymax do /*for each of my rows*/

18, for j + 1 ten do /*for all nonborder elements in that row*/

19, temp = Ali.i]:

20. ATE 0.2 * {A[i,3] + A[i,3=1] + Ali-1,3] +

21. +1] + Ali+1,30):

22, mydiff += abs{A[i,j] - temp):

23. endfor

24. endfor

25a. LOCK(diff lock); {*update global diff if necessary*/

258, ALFT += mydiff;

25¢. UNLOCK{diff lock);

25d. BARRIER(barl, nprocs); I*ensure all reach here before checking if done*/

5e. if (diff/(n*n) < TOL) then done = 1; Fcheck convergence; all pet
same answer*/

25E, BARRIER{barl, nproce);

26. endwhile

27. end procedure
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Message Passing Primitives
Table 2.3 Some Basic Message-Passing Primitives
Name Syntax Function

CREATE CREATE (procedure) Create process that starts at procedure

SEND SEND (sre_addr, size, Send size bytes starting at src_addr to the

dest, tag) dest process, with tag identifier

RECEIVE RECEIVE {buffer_addr, Receive a message with the tag identifier from

size, sre, tag) the src process, and put size bytes of it into
buffer starting at buf fer_addr

SEND_PROBE SEND_FROBE (tag, dest) Check if message with identifier tag has been
sent 1o process dest (ohly for asynchronous
message passing, and meaning depends on
semantics, as discussed in this section)

RECV_PROBE RECV_PROBE(tag, src) Check if message with identifier tag has been
received from process sre (only for asynchro-
nous message passing, and meaning depends
on semantics)

BARRIER BARRIER (name, number) "Glabal synchronization among number pro-
cesses: none gets past BARRTER until number
have arrived

WAIT_FOR_END WAIT_FOR_END(number) Wait for number processes to terminate

(C) 2005 Babak Falsafi from Adve, Falsafi,
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Sends and Receives

* Synchronous
— send: returns control to sending process after receive is performed
— receive: returns control when data is written into address space
— can deadlock on pairwise data exchanges

+ Asynchronous
— Blocking

» send: returns control when the message has been sent from
source data structure (but may still be in transit)

» receive: like synchronous, but no ack is sent to sender
— Non-Blocking

» send: returns control immediately

» receive: posts “intent” to receive

» probe operations determine completion

(C) 2005 Babak Falsafi from Adve, Falsafi,
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Message Passing Programming

» Create separate processes

« Each process a portion of the array

— n/nprocs (+2) rows

— boundary rows are passed in messages

» deterministic because boundaries only change between
iterations
» To test for convergence, each process computes
mydiff and sends to proc 0
— synchronized via send/receive

(C) 2005 Babak Falsafi from Adve, Falsafi,
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Message Passing Programming 1 of 2

10. procedure Soclvel()
11. begin
13. int i,j, pid, n’' = n/nprocs, done = 0;
14, float temp, tempdiff, mydiff = O; / *private variables*/
6. myA < malloc{a 2-d array of size [n/nprocs + 2] by n+2};
/*my assigned rows of A*/
7. initialize (myA); [*initialize my rows of A, in an unspecified way*/

15. while {!done) do
16. mydiff = 0; J¥set local diff to 0%/
léa. if {(pid '= 0) then SEND(imyA[l,0] ,n*sizeocf(float},pid-1,ROW);
16b. if {pid = nprocs-1) then
SEND{&myA(n’,0] ,n*sizecf {float),pid+1, ROW) ;
16c. if (pid !=0) then RECEIVE(&myA[0,0),n*sizeof(float),pid-1,ROW);
16d. if (pid !=nprocs-1) then
RECEIVE(&myA(n’'+1,0],n*sizeof (float), pid+l,ROW);
/*border rows of neighbors have now been copied
into myA[0,*] and myAjn’+1,*]*/

copyright 1999 Morgan Kaufmann Publishers, Inc
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Message Passing Programming 2 of 2

17. for i « 1 ton’ do I*for each of my {(nonghost) rows*/

18, for § « 1 ton do 1*for all nonborder elements in that row*/
19. cemp = myAf{i,jl;

20. myA(i,j] = 0.2 * (myA{i,J] + myA(i,J-1] + myA{i-1,J] +
21. myAli,+1] + myAli+l,§]1);

22. mydiff += abs{myA[i,j] - temp);

23. endfor

24. endfor
/*communicate local diff values and determine if
done; can be replaced by reduction and broadcast*/

25a. if (pid != 0) then [process 0 holds global total diff*/
25b. SEND{mydiff,sizeof (float), 0, DIFF);

25¢. RECEIVE(done,sizeof (int},{, DONE) ;

25d.  else I*pid 0 does this*/

25e. for i « 1 to nprocs-1 do I*for each other process*/
25€. RECEIVE(tempdiff, sizeof (float),*, DIFF);

25g. mydiff += cempdiff; [*accumulate into total*/
25h. endfor

251 if (mydiff/(n*n) < TOL) then done = 1;

253. for i « 1 to nprocs-1 do I*for each other process*/
25k. SEND(done, sizeof (int}, i, DONE) ;

251. endfor

25m.  endif

26. endwhile
27. end procedure

(C) 2005 Babak raisart rom Aave, raisari,
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Programming for Performance

 Partitioning, Granularity, Communication, etc.

* Caches and Their Effects
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Where Do Programs Spend Time?

» Sequential
— Busy computing
— Memory system stalls
» Parallel
— Busy computing
— Stalled for local memory
— Stalled for remote memory (communication)
— Synchronizing (load imbalance and operations)
— Overhead
+ Speedup (p) = time(1)/time(p)
— Amdahl’s Law
— Superlinear
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Speedup

Sequential Work

Speedup <

max(Work on any processor)

Sequential Work

Speedup <

max(Work + Synch Wait + Communication)
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Concurrency Profile

* Plot number of
concurrent tasks ,
over time ;

+ Example: operate on ©
n? parallel data
points, then sum
them

— sum sequentially

— first sum blocks in
parallel then sum p
partial sums
sequentially

vl

-
i o

Work done concurrently

Time

copyright 1999 Morgan Kaufmann Publishers, Inc

(C) 2005 Babak Falsafi from Adve, Falsafi, )
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Concurrency Profile: Speedup

Area under concurrency profile
Horizontal extent of concurrency profile

* Speedup <

f = fraction of work with concurrency k (< p)
p = number of processors
P
Shoo
Speedup(p) < me 54
k=1 g k k=1 k

* Normalize total work to 1; make concurrency either serial or
completely parallel = Amdahl’s Law

1
1-s
S+—
p

note: book has an unusual formulation of Amdahl’s law (based on fraction of time
rather than fraction of work)
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Partitioning for Performance

« Balance workload
— reduce time spent at synchronization

« Reduce communication

* Reduce extra work
— determining and managing good assignment

* These are at odds with each other
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Data vs. Functional Parallelism

Data Parallelism
— same ops on different data items

Functional (control, task) Parallelism
— pipeline
* Impact on load balancing?

Functional is more difficult
— longer running tasks

(C) 2005 Babak Falsafi from Adve, Falsafi,
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Impact of Task Granularity

* Granularity = Amount of work associated with task

+ Large tasks
— worse load balancing
— lower overhead
— less contention
— less communication

+ Small tasks
— too much synchronization

— too much management overhead
— might have too much communication (affinity scheduling)
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Impact of Concurrency

* Managing Concurrency
— load balancing

» Static

— Can not adpat to changes
* Dynamic
— Can adapt
— Cost of management increases
— Self-scheduling (guided self-scheduling)
— Centralized task queue
» contention
— Distributed task queue
» Can steal from other queues
» Arch: Name data associated with stolen task

(C) 2005 Babak Falsafi from Adve, Falsafi,
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Task Queues

All processes

insert tasks Pg inserts Py inserts Py inserts P3 inserts
Q Qo Qy Q; Qs
Az -
Others may L PR
steal )‘ - '
All remove tasks Pg remaoves Py removes Py removes P3 removes
(a) Centralized task queue {b) Distributed task queues (one per process)

copyright 1999 Morgan Kaufmann Publishers, Inc
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Dynamic Load Balancing

30~ -8 Origin, semistatic 30 — —8—  Origin, dynamic
—%— Challenge, semistatic —#— Challenge, dynamic
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FIGURE 3.2 lllustration of the performance impact of dynamic partitioning for load balance.
The graph in (a) shows the speedups cf the Barmes-Hut application with and without semistatic parti-
tioning, and the graph in (&) shows the speedups of Raytrace with and without dynamic tasking. Even in
these applications that have a lot of parallelism, dynamic partitioning is important for improving load
balance over static partitioning.

copyright 1999 Morgan Kaufmann Publishers, Inc
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Impact of Synchronization and Serialization

Too coarse synchronization
— barriers instead of point-to-point synch
— poor load balancing
Too many synchronization operations
— lock each element of array
— costly operations
Coarse grain locking
— lock entire array
— serialize access to array
Architectural aspects

— cost of synchronization operation
— synchronization name space
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