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Homework 1

• Due by Friday
• Homework 2 assigned on Friday

– Parallel programming homework
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Readings

• From Reader 2
– Chapter 3
– P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso, 

Performance of Database Workloads on Shared-Memory Systems 
with Out-of-Order Processors, ASPLOS 1998. 

– A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore, M. Xu, D. 
J. Sorin, M. D. Hill, and D. A. Wood, Simulating a $2M Commercial 
Server on a $2K PC, IEEE Computer, February 2003. 

– A. R. Alameldeen and D. A. Wood, Variability in Architectural 
Simulations of Multi-threaded Workloads, HPCA 2003. 
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Parallel Programming

To understand and evaluate
design decisions in a parallel machine,
we must get an idea of the software

that runs on a parallel machine.

--Introduction to Culler et al.’s Chapter 2,
beginning 192 pages on software
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Outline

• Review

• Applications

• Creating Parallel Programs

• Programming for Performance

• Scaling
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Review: Separation of Model and Architecture

• Shared Memory
– Single shared address space
– Communicate, synchronize using load / store
– Can support message passing

• Message Passing
– Send / Receive 
– Communication + synchronization
– Can support shared memory

• Data Parallel
– Lock-step execution on regular data structures
– Often requires global operations (sum, max, min...)
– Can support on either SM or MP
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Review: A Generic Parallel Machine

• Separation of 
programming 
models from 
architectures

• All models 
require 
communication

• Node with 
processor(s), 
memory, 
communication 
assist
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Review: Fundamental Architectural Issues

• Naming: How is communicated data and/or partner 
node referenced?

• Operations: What operations are allowed on named 
data?

• Ordering: How can producers and consumers of data 
coordinate their activities?

• Performance
– Latency: How long does it take to communicate in a protected 

fashion?
– Bandwidth:  How much data can be communicated per second? 

How many operations per second?
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Applications

• N-Body Simulation: Barnes-Hut
• Ocean Current Simulation: Ocean
• VLSI Routing: Locus Route
• Ray Tracing

– Shoot Ray through three dimensional scene (let it bounce off 
objects)

• Data Mining
– finding associations
– Consumers that are college students, and buy beer, tend to buy 

chips  
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Barnes-Hut

• Computing the mutual interactions of N bodies
– n-body problems
– stars, planets, molecules…

• Can approximate influence of distant bodies
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Ocean

• Simulate ocean currents
• discretize in space and time

Ocean Basin
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Creating a Parallel Program

• Can be done by programmer, compiler, run-time 
system or OS

• A Task is a piece of work
– Ocean: grid point, row, plane
– Raytrace: 1 ray or group of rays

• Task grain
– small => fine-grain task
– large => course-grain task

• Process (thread) performs tasks
– According to OS: process = thread(s) + address space

• Process (threads) executed on processor(s)
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Example: Ocean

• Equation Solver
– kernel = small piece of important code (Not OS kernel…)

• Update each point based on NEWS neighbors
– Gauss-Seidel (update in place)

• Compute average difference per element
• Convergence when diff small => exit
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Equation Solver Decomposition

while !converged
for

for

• The loops are not independent!
• Exploit properties of problem

– Don’t really need up-to-date values (approximation)
– May take more steps to converge, but exposes parallelism
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Sequential Solver

• Recurrence in Inner Loop

copyright 1999 Morgan Kaufmann Publishers, Inc
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Parallel Solver

• Identical computation as Original Code
• Parallelism along anti-diagonal
• Different degrees of parallelism as diagonal 

grows/shrinks

copyright 1999 Morgan Kaufmann Publishers, Inc
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The FORALL Statement

while !converged
forall

forall

• Can execute the iterations in parallel
• Each grid point computation (n2 parallelism)
while !converged

forall
for

• Computation for rows is independent (n parallelism)
– less overhead
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Asynchronous Parallel Solver

Each processor updates its region independent of other’s values
• Global synch at end of iteration, to keep things somewhat up-to-date
• non-deterministic

copyright 1999 Morgan Kaufmann Publishers, Inc
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Red-Black Parallel Solver

• Red-Black
– like checkerboard update of Red point depends only on Black points
– alternate iterations over red, then black
– but convergence may change
– deterministic

copyright 1999 Morgan Kaufmann Publishers, Inc
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PARMACS

• Macro Package, runtime system must implement
– portability

CREATE(p,proc,args) Create p processes executing proc(args)
G_MALLOC(size) Allocate shared data of size bytes
LOCK(name)
UNLOCK(name)
BARRIER(name,number) Wait for number processes to arrive
WAIT_FOR_END(number) Wait for number processes to terminate
WAIT(flag) while(!flag);
SIGNAL(flag) flag = 1;
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Shared Memory Programming
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Message Passing Primitives
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Sends and Receives

• Synchronous
– send: returns control to sending process after receive is performed
– receive: returns control when data is written into address space
– can deadlock on pairwise data exchanges

• Asynchronous
– Blocking

» send: returns control when the message has been sent from 
source data structure  (but may still be in transit)

» receive: like synchronous, but no ack is sent to sender
– Non-Blocking

» send: returns control immediately
» receive: posts “intent” to receive
» probe operations determine completion
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Message Passing Programming

• Create separate processes
• Each process a portion of the array

– n/nprocs (+2)  rows
– boundary rows are passed in messages

» deterministic because boundaries only change between 
iterations

• To test for convergence, each process computes 
mydiff and sends to proc 0

– synchronized via send/receive
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Message Passing Programming 1 of 2

copyright 1999 Morgan Kaufmann Publishers, Inc
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Message Passing Programming 2 of 2
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Programming for Performance

• Partitioning, Granularity, Communication, etc.

• Caches and Their Effects
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Where Do Programs Spend Time?

• Sequential
– Busy computing
– Memory system stalls

• Parallel
– Busy computing
– Stalled for local memory
– Stalled for remote memory (communication)
– Synchronizing (load imbalance and operations)
– Overhead

• Speedup (p) = time(1)/time(p)
– Amdahl’s Law
– Superlinear
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Speedup

max(Work + Synch Wait + Communication)
Speedup ≤

Sequential Work

max(Work on any processor)
Speedup ≤

Sequential Work
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Concurrency Profile

• Plot number of 
concurrent tasks 
over time

• Example: operate on 
n2  parallel data 
points, then sum 
them

– sum sequentially
– first sum blocks in 

parallel then sum p 
partial sums 
sequentially

Speedupoverall =

1

(1 - Fractionenhanced) +  Fractionenhanced

Speedupenhanced

copyright 1999 Morgan Kaufmann Publishers, Inc
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Concurrency Profile: Speedup

•

• Normalize total work to 1; make concurrency either serial or 
completely parallel ⇒ Amdahl’s Law

note: book has an unusual formulation of Amdahl’s law (based on fraction of time 
rather than fraction of work)
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Partitioning for Performance

• Balance workload
– reduce time spent at synchronization

• Reduce communication
• Reduce extra work

– determining and managing good assignment

• These are at odds with each other



Page 17

18-742 33
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Data vs. Functional Parallelism

• Data Parallelism
– same ops on different data items

• Functional (control, task) Parallelism
– pipeline

• Impact on load balancing?
• Functional is more difficult

– longer running tasks
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Impact of Task Granularity

• Granularity = Amount of work associated with task
• Large tasks

– worse load balancing
– lower overhead
– less contention
– less communication

• Small tasks
– too much synchronization
– too much management overhead
– might have too much communication (affinity scheduling)
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Impact of Concurrency

• Managing Concurrency
– load balancing

• Static
– Can not adpat to changes

• Dynamic
– Can adapt
– Cost of management increases
– Self-scheduling (guided self-scheduling)
– Centralized task queue

» contention
– Distributed task queue

» Can steal from other queues
» Arch: Name data associated with stolen task

18-742 36
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Task Queues

copyright 1999 Morgan Kaufmann Publishers, Inc
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Dynamic Load Balancing

copyright 1999 Morgan Kaufmann Publishers, Inc
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Impact of Synchronization and Serialization

• Too coarse synchronization
– barriers instead of point-to-point synch
– poor load balancing

• Too many synchronization operations
– lock each element of array
– costly operations

• Coarse grain locking
– lock entire array
– serialize access to array

• Architectural aspects
– cost of synchronization operation
– synchronization name space


