
Page 1

18-742
Lecture 3

Parallel
Programming I
Spring 2005
Prof. Babak Falsafi
http://www.ece.cmu.edu/~ece742

Slides developed in part by Profs. Adve, Falsafi, Hill, Slides developed in part by Profs. Adve, Falsafi, Hill, LebeckLebeck, Reinhardt, , Reinhardt,
Smith, and Singh of University of Illinois, Carnegie Mellon UnivSmith, and Singh of University of Illinois, Carnegie Mellon University, ersity,
University of Wisconsin, Duke University, University of MichiganUniversity of Wisconsin, Duke University, University of Michigan, and , and
Princeton University.Princeton University.

P P

Memory

P P

Memory Memory

send X

write X read X

18-742 2
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Homework 1

• Due by Friday
• Homework 2 assigned on Friday

– Parallel programming homework

Page 2

18-742 3
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Readings

• From Reader 2
– Chapter 3
– P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso,

Performance of Database Workloads on Shared-Memory Systems
with Out-of-Order Processors, ASPLOS 1998.

– A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E. Moore, M. Xu, D.
J. Sorin, M. D. Hill, and D. A. Wood, Simulating a $2M Commercial
Server on a $2K PC, IEEE Computer, February 2003.

– A. R. Alameldeen and D. A. Wood, Variability in Architectural
Simulations of Multi-threaded Workloads, HPCA 2003.

18-742 4
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Parallel Programming

To understand and evaluate
design decisions in a parallel machine,
we must get an idea of the software

that runs on a parallel machine.

--Introduction to Culler et al.’s Chapter 2,
beginning 192 pages on software

Page 3

18-742 5
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Outline

• Review

• Applications

• Creating Parallel Programs

• Programming for Performance

• Scaling

18-742 6
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Review: Separation of Model and Architecture

• Shared Memory
– Single shared address space
– Communicate, synchronize using load / store
– Can support message passing

• Message Passing
– Send / Receive
– Communication + synchronization
– Can support shared memory

• Data Parallel
– Lock-step execution on regular data structures
– Often requires global operations (sum, max, min...)
– Can support on either SM or MP

Page 4

18-742 7
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Review: A Generic Parallel Machine

• Separation of
programming
models from
architectures

• All models
require
communication

• Node with
processor(s),
memory,
communication
assist

Interconnect

CA

Mem
P

$
CA

Mem
P

$

CA

Mem
P

$
CA

Mem
P

$

Node 0 Node 1

Node 2 Node 3

18-742 8
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Review: Fundamental Architectural Issues

• Naming: How is communicated data and/or partner
node referenced?

• Operations: What operations are allowed on named
data?

• Ordering: How can producers and consumers of data
coordinate their activities?

• Performance
– Latency: How long does it take to communicate in a protected

fashion?
– Bandwidth: How much data can be communicated per second?

How many operations per second?

Page 5

18-742 9
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Applications

• N-Body Simulation: Barnes-Hut
• Ocean Current Simulation: Ocean
• VLSI Routing: Locus Route
• Ray Tracing

– Shoot Ray through three dimensional scene (let it bounce off
objects)

• Data Mining
– finding associations
– Consumers that are college students, and buy beer, tend to buy

chips

18-742 10
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Barnes-Hut

• Computing the mutual interactions of N bodies
– n-body problems
– stars, planets, molecules…

• Can approximate influence of distant bodies

Page 6

18-742 11
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Ocean

• Simulate ocean currents
• discretize in space and time

Ocean Basin

18-742 12
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Creating a Parallel Program

• Can be done by programmer, compiler, run-time
system or OS

• A Task is a piece of work
– Ocean: grid point, row, plane
– Raytrace: 1 ray or group of rays

• Task grain
– small => fine-grain task
– large => course-grain task

• Process (thread) performs tasks
– According to OS: process = thread(s) + address space

• Process (threads) executed on processor(s)

Page 7

18-742 13
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Example: Ocean

• Equation Solver
– kernel = small piece of important code (Not OS kernel…)

• Update each point based on NEWS neighbors
– Gauss-Seidel (update in place)

• Compute average difference per element
• Convergence when diff small => exit

18-742 14
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Equation Solver Decomposition

while !converged
for

for

• The loops are not independent!
• Exploit properties of problem

– Don’t really need up-to-date values (approximation)
– May take more steps to converge, but exposes parallelism

Page 8

18-742 15
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Sequential Solver

• Recurrence in Inner Loop

copyright 1999 Morgan Kaufmann Publishers, Inc

18-742 16
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Parallel Solver

• Identical computation as Original Code
• Parallelism along anti-diagonal
• Different degrees of parallelism as diagonal

grows/shrinks

copyright 1999 Morgan Kaufmann Publishers, Inc

Page 9

18-742 17
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

The FORALL Statement

while !converged
forall

forall

• Can execute the iterations in parallel
• Each grid point computation (n2 parallelism)
while !converged

forall
for

• Computation for rows is independent (n parallelism)
– less overhead

18-742 18
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Asynchronous Parallel Solver

Each processor updates its region independent of other’s values
• Global synch at end of iteration, to keep things somewhat up-to-date
• non-deterministic

copyright 1999 Morgan Kaufmann Publishers, Inc

Page 10

18-742 19
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Red-Black Parallel Solver

• Red-Black
– like checkerboard update of Red point depends only on Black points
– alternate iterations over red, then black
– but convergence may change
– deterministic

copyright 1999 Morgan Kaufmann Publishers, Inc

18-742 20
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

PARMACS

• Macro Package, runtime system must implement
– portability

CREATE(p,proc,args) Create p processes executing proc(args)
G_MALLOC(size) Allocate shared data of size bytes
LOCK(name)
UNLOCK(name)
BARRIER(name,number) Wait for number processes to arrive
WAIT_FOR_END(number) Wait for number processes to terminate
WAIT(flag) while(!flag);
SIGNAL(flag) flag = 1;

Page 11

18-742 21
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Shared Memory Programming

18-742 22
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Message Passing Primitives

Page 12

18-742 23
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Sends and Receives

• Synchronous
– send: returns control to sending process after receive is performed
– receive: returns control when data is written into address space
– can deadlock on pairwise data exchanges

• Asynchronous
– Blocking

» send: returns control when the message has been sent from
source data structure (but may still be in transit)

» receive: like synchronous, but no ack is sent to sender
– Non-Blocking

» send: returns control immediately
» receive: posts “intent” to receive
» probe operations determine completion

18-742 24
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Message Passing Programming

• Create separate processes
• Each process a portion of the array

– n/nprocs (+2) rows
– boundary rows are passed in messages

» deterministic because boundaries only change between
iterations

• To test for convergence, each process computes
mydiff and sends to proc 0

– synchronized via send/receive

Page 13

18-742 25
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Message Passing Programming 1 of 2

copyright 1999 Morgan Kaufmann Publishers, Inc

18-742 26
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Message Passing Programming 2 of 2

Page 14

18-742 27
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Programming for Performance

• Partitioning, Granularity, Communication, etc.

• Caches and Their Effects

18-742 28
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Where Do Programs Spend Time?

• Sequential
– Busy computing
– Memory system stalls

• Parallel
– Busy computing
– Stalled for local memory
– Stalled for remote memory (communication)
– Synchronizing (load imbalance and operations)
– Overhead

• Speedup (p) = time(1)/time(p)
– Amdahl’s Law
– Superlinear

Page 15

18-742 29
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Speedup

max(Work + Synch Wait + Communication)
Speedup ≤

Sequential Work

max(Work on any processor)
Speedup ≤

Sequential Work

(C) 2003 J. E. Smith CS/ECE 75718-742 30
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Concurrency Profile

• Plot number of
concurrent tasks
over time

• Example: operate on
n2 parallel data
points, then sum
them

– sum sequentially
– first sum blocks in

parallel then sum p
partial sums
sequentially

Speedupoverall =

1

(1 - Fractionenhanced) + Fractionenhanced

Speedupenhanced

copyright 1999 Morgan Kaufmann Publishers, Inc

Page 16

(C) 2003 J. E. Smith CS/ECE 75718-742 31
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Concurrency Profile: Speedup

•

• Normalize total work to 1; make concurrency either serial or
completely parallel ⇒ Amdahl’s Law

note: book has an unusual formulation of Amdahl’s law (based on fraction of time
rather than fraction of work)

profileyconcurrencofextentHorizontal
profileyconcurrencunderAreaSpeedup ≤

∑∑

∑

==

= =

≤

=

≤=

p

k

k
p

k
k

p

k
k

k
f

k
f

f
pSpeedup

processorsofnumberp

pkyconcurrencwithworkoffractionkf

11

1 1
1

)(

)(

p
ss −

+
1
1

18-742 32
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Partitioning for Performance

• Balance workload
– reduce time spent at synchronization

• Reduce communication
• Reduce extra work

– determining and managing good assignment

• These are at odds with each other

Page 17

18-742 33
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Data vs. Functional Parallelism

• Data Parallelism
– same ops on different data items

• Functional (control, task) Parallelism
– pipeline

• Impact on load balancing?
• Functional is more difficult

– longer running tasks

18-742 34
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Impact of Task Granularity

• Granularity = Amount of work associated with task
• Large tasks

– worse load balancing
– lower overhead
– less contention
– less communication

• Small tasks
– too much synchronization
– too much management overhead
– might have too much communication (affinity scheduling)

Page 18

18-742 35
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Impact of Concurrency

• Managing Concurrency
– load balancing

• Static
– Can not adpat to changes

• Dynamic
– Can adapt
– Cost of management increases
– Self-scheduling (guided self-scheduling)
– Centralized task queue

» contention
– Distributed task queue

» Can steal from other queues
» Arch: Name data associated with stolen task

18-742 36
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Task Queues

copyright 1999 Morgan Kaufmann Publishers, Inc

Page 19

18-742 37
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Dynamic Load Balancing

copyright 1999 Morgan Kaufmann Publishers, Inc

18-742 38
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Impact of Synchronization and Serialization

• Too coarse synchronization
– barriers instead of point-to-point synch
– poor load balancing

• Too many synchronization operations
– lock each element of array
– costly operations

• Coarse grain locking
– lock entire array
– serialize access to array

• Architectural aspects
– cost of synchronization operation
– synchronization name space

