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What & Why of Multithreading

What?
– Run multiple threads on the same core

Why?
– Key hardware resources are often idle for a single thread
– Large variability in IPC across threads
– E.g., desktop 2-4 IPC for 8-way, OLTP 0.4 IPC for 8-way

How?
– Multiple thread contexts

» Architectural: PC, SP, reg file
» Microarchitectural: Fetch, LSQ, ROB
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Core Sharing

Time sharing:
– Run one thread
– On a long-latency operation (e.g., cache miss), switch
– Also known as “switch-on-miss” multithreading

Space sharing:
– Across pipeline depth

» Fetch and issue each cycle form a different thread
– Both across pipeline width and depth

» Fetch and issue each cycle from from multiple threads
» Policy to decide which to fetch gets complicated
» Also known as “simultaneous” multithreading
» E.g., Alpha 21464, IBM POWER5
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Alpha 21264 Microprocessor

• Architectural Features
– First “Out-of-Order” Alpha 
– Four-wide superscalar
– …

• Performance
– World’s Fastest Microprocessor (www.spec.org, 11/17/99)
– 39 SPECINT95, 68 SPECFP95 @ 700 Mhz

» Intel Pentium III @ 733 Mhz delivers 36 SPECINT95, 30 SPECFP95
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Alpha 21464 Goals

• Leadership single thread performance
– Higher operating frequency / better technology
– New microarchitecture
– Integrated memory interface (like 21364)

• Leadership multiprocessor performance

– Simultaneous Multithreading (with minimal change/cost)
– Integrated system / multiprocessor interface (like 21364)
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Alpha 21464 Technology Overview

• Leading edge process technology – 1.2-2.0GHz
– 0.125µm CMOS
– SOI-compatible
– Cu interconnect
– low-k dielectrics

• Chip characteristics
– ~1.2V Vdd
– ~250 Million transistors
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Alpha 21464 Architecture Overview

• Enhanced out-of-order execution
• 8-wide superscalar
• Large on-chip L2 cache
• Direct RAMBUS interface
• On-chip router for system interconnect 
• Glueless, directory-based, ccNUMA

– for up to 512-way multiprocessing

• 4-way simultaneous multithreading (SMT)



Page 5

18-742 9
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Instruction Issue

Reduced function unit utilization due to dependencies

Time
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Superscalar Issue

Superscalar leads to more performance, but lower utilization

Time
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Predicated Issue

Adds to function unit utilization, but results are thrown away

Time
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Chip Multiprocessor

Limited utilization when only running one thread

Time
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Fine Grained Multithreading

Intra-thread dependencies still limit performance

Time
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Simultaneous Multithreading

Maximum utilization of function units by independent operations

Time
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Basic Out-of-order Pipeline
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SMT Pipeline
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Changes for SMT

• Basic pipeline – unchanged

• Replicated resources
– Program counters
– Register maps

• Shared resources
– Register file (size increased)
– Instruction queue
– First and second level caches
– Translation buffers
– Branch predictor
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Multiprogrammed workload
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Decomposed SPEC95 Applications
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Multithreaded Applications
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Scaling Processor Performance

Increasing number of transistors

Need designs to:
1. Extract parallelism
2. Avoid program modification
3. Allow for clock scalability

Simultaneous Multithreading
– Single wide-issue out-of-order pipe
– Runs “explicitly-parallel” threads together
– Shared pipeline resources
– E.g., Pentium 4, Alpha 21464, Power 5

But, 
want to run sequential programs faster!
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Solution: Speculative Threading on SMT

Peal off candidate code blocks
Execute them speculatively
→ Enforce sequential execution

But,
Speculative threads ≠ SMT threads!

Must control pipeline resource sharing
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• Speculative threading on SMT
• Compiler-specified threads (Multiscalar)
• Hardware speculation + verification
• 3 uArch optimizations to throttle sharing

Speedup over superscalar by 20%-29%

Implicitly-Multithreaded processors [Park et al., ISCA’03]
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IMT Architecture

Compiler
– Selects candidate threads
– Provides register + control information

Hardware
– Control Dependence
– Register communication
– Memory disambiguation

Compiler + Hardware integration
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Speculative Threading on SMT
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IMT Hardware

Control Dependence
– Uses compiler information
– Minor change on branch prediction 

Register communication
– Uses compiler information
– Leverages conventional renaming

Memory disambiguation
– Searches across ld/st queues

Naïve-IMT (N-IMT) → Minor mods to SMT
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What is wrong with N-IMT?

Fetches & executes like SMT
1. Uses ICOUNT fetch policy

→ Makes threads compete for resources
2. Maps single thread per context 

→ Underutilizes resources
3. Incurs thread start-up delay

→ Copying register rename tables

Results in inefficient speculation!
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Efficient Speculation: Optimized IMT

O-IMT uses 3 uArch mechanisms:
1. Resource- & Dep.-based fetch

→ Parallel fetch only from independent threads

2. Context multiplexing
→ Map multiple threads per context

3. Hide thread start-up overhead
(covered in the paper)
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Opt(1) Res.-Based Fetch: Example

Thread1

Thread2

Thread3

Thread4

5

Occupied 
Registers

Free Registers:

5

5

5

Thread1

Thread2

Thread3

Thread4

+10

+10

+10

+10

+20

Occupied 
Registers

Prealloc. 
Registers

5

5

5

+10

+10

+5

+20 35

15

10

N-IMT O-IMT

Naïve resource allocation Careful resource allocation

604006010600



Page 16

18-742 31
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Opt(1) Dep.-Based Fetch: Example

ICOUNT fetches
threads equally

=> Stall
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R&D Fetch: Mechanism

Two predictors:

1. Resource predictor (DRP) 
– Gauges resource availability
– Avoids thread squash

2. Dependence predictor (ITDH)
– Gauges thread dependence
– Avoids stalls
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Opt(2): Context Multiplexing

Insufficient instruction overlap because
– Maps one thread to a context 
– A few contexts (2-8) in SMT
– Small Multiscalar threads (15-20 inst/thread)
– Variable thread size (up to 100 insts)

But, [Hammond et al., ASPLOS98] [Vijaykumar et al., Micro98]

Larger threads → higher squash overhead
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Context Multiplexing: Mechanism

Splits context resources dynamically
Assigns multiple threads/context  
As many as allowed by resources:

– Active list entries
– Ld/St queue entries

Increases effective thread size dynamically!
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Methodology: Detailed Simulation

IMT & Superscalar

356-entry register file INT/FP
two fetch ports (multiple predictions for superscalar)
8-way issue
64-entry Issue queue

1 context
1024-entry active list,
256-entry LSQ

8 contexts
128-entry active list, 
32-entry LSQ per context

SuperscalarIMT
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Conclusions

Proposed IMT
– Maps speculative threading on SMT
– N-IMT performs worse than superscalar
– Identify inefficiencies of N-IMT
– Propose 3 uArch optimizations

Speedup over aggressive superscalar
→ On average 20% for INT, 29% for FP


