
Page 1

18-742
Lecture 25

Multithreading
Spring 2005
Prof. Babak Falsafi
http://www.ece.cmu.edu/~ece742

Slides developed in part by Prof. Falsafi from Mukherjee from InSlides developed in part by Prof. Falsafi from Mukherjee from Intel.tel.

Fetch Decode
/Map

Queue Reg
Read

Execute Dcache/
Store
Buffer

Reg
Write

Retire

Icach
e

Dcac
he

PC

Register
Map

Regs Regs

18-742 2
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

What & Why of Multithreading

What?
– Run multiple threads on the same core

Why?
– Key hardware resources are often idle for a single thread
– Large variability in IPC across threads
– E.g., desktop 2-4 IPC for 8-way, OLTP 0.4 IPC for 8-way

How?
– Multiple thread contexts

» Architectural: PC, SP, reg file
» Microarchitectural: Fetch, LSQ, ROB

Page 2

18-742 3
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Core Sharing

Time sharing:
– Run one thread
– On a long-latency operation (e.g., cache miss), switch
– Also known as “switch-on-miss” multithreading

Space sharing:
– Across pipeline depth

» Fetch and issue each cycle form a different thread
– Both across pipeline width and depth

» Fetch and issue each cycle from from multiple threads
» Policy to decide which to fetch gets complicated
» Also known as “simultaneous” multithreading
» E.g., Alpha 21464, IBM POWER5

18-742 4
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Alpha 21264 Microprocessor

• Architectural Features
– First “Out-of-Order” Alpha
– Four-wide superscalar
– …

• Performance
– World’s Fastest Microprocessor (www.spec.org, 11/17/99)
– 39 SPECINT95, 68 SPECFP95 @ 700 Mhz

» Intel Pentium III @ 733 Mhz delivers 36 SPECINT95, 30 SPECFP95

Page 3

18-742 5
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Higher Performance
Lo

w
er

 C
os

t

2000 2001 2002 20031998 1999

21264 21264
EV6 EV6

2126421264
EV68EV68

0.35µm

2126421264
EV67EV67

0.28µm

0.18µm

2136421364
EV7EV7

0.18µm

2146421464
EV8EV8

0.125µm

Alpha Microprocessor Overview

2136421364
EV78EV78

0.125µm

First System Ship

18-742 6
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Alpha 21464 Goals

• Leadership single thread performance
– Higher operating frequency / better technology
– New microarchitecture
– Integrated memory interface (like 21364)

• Leadership multiprocessor performance

– Simultaneous Multithreading (with minimal change/cost)
– Integrated system / multiprocessor interface (like 21364)

Page 4

18-742 7
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Alpha 21464 Technology Overview

• Leading edge process technology – 1.2-2.0GHz
– 0.125µm CMOS
– SOI-compatible
– Cu interconnect
– low-k dielectrics

• Chip characteristics
– ~1.2V Vdd
– ~250 Million transistors

18-742 8
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Alpha 21464 Architecture Overview

• Enhanced out-of-order execution
• 8-wide superscalar
• Large on-chip L2 cache
• Direct RAMBUS interface
• On-chip router for system interconnect
• Glueless, directory-based, ccNUMA

– for up to 512-way multiprocessing

• 4-way simultaneous multithreading (SMT)

Page 5

18-742 9
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Instruction Issue

Reduced function unit utilization due to dependencies

Time

18-742 10
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Superscalar Issue

Superscalar leads to more performance, but lower utilization

Time

Page 6

18-742 11
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Predicated Issue

Adds to function unit utilization, but results are thrown away

Time

18-742 12
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Chip Multiprocessor

Limited utilization when only running one thread

Time

Page 7

18-742 13
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Fine Grained Multithreading

Intra-thread dependencies still limit performance

Time

18-742 14
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Simultaneous Multithreading

Maximum utilization of function units by independent operations

Time

Page 8

18-742 15
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Basic Out-of-order Pipeline

Fetch Decod
e/Map

Queue Reg
Read

Execut
e

Dcach
e/Store
Buffer

Reg
Write

Retire

PC

Icache

Register
Map

Dcache
Regs Regs

Thread-
blind

18-742 16
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

SMT Pipeline

Fetch Decod
e/Map

Queue Reg
Read

Execut
e

Dcach
e/Stor

e
Buffer

Reg
Write

Retire

Icache
Dcache

PC

Register
Map

Regs Regs

Page 9

18-742 17
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Changes for SMT

• Basic pipeline – unchanged

• Replicated resources
– Program counters
– Register maps

• Shared resources
– Register file (size increased)
– Instruction queue
– First and second level caches
– Translation buffers
– Branch predictor

18-742 18
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Multiprogrammed workload

0%

50%

100%

150%

200%

250%

SpecInt SpecFP Mixed Int/FP

1T
2T
3T
4T

Page 10

18-742 19
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Decomposed SPEC95 Applications

0%

50%

100%

150%

200%

250%

Turb3d Swm256 Tomcatv

1T
2T
3T
4T

18-742 20
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Multithreaded Applications

0%

50%

100%

150%

200%

250%

300%

Barnes Chess Sort TP

1T
2T
4T

Page 11

18-742 21
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Scaling Processor Performance

Increasing number of transistors

Need designs to:
1. Extract parallelism
2. Avoid program modification
3. Allow for clock scalability

Simultaneous Multithreading
– Single wide-issue out-of-order pipe
– Runs “explicitly-parallel” threads together
– Shared pipeline resources
– E.g., Pentium 4, Alpha 21464, Power 5

But,
want to run sequential programs faster!

18-742 22
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Solution: Speculative Threading on SMT

Peal off candidate code blocks
Execute them speculatively
→ Enforce sequential execution

But,
Speculative threads ≠ SMT threads!

Must control pipeline resource sharing

Page 12

18-742 23
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

• Speculative threading on SMT
• Compiler-specified threads (Multiscalar)
• Hardware speculation + verification
• 3 uArch optimizations to throttle sharing

Speedup over superscalar by 20%-29%

Implicitly-Multithreaded processors [Park et al., ISCA’03]

18-742 24
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

IMT Architecture

Compiler
– Selects candidate threads
– Provides register + control information

Hardware
– Control Dependence
– Register communication
– Memory disambiguation

Compiler + Hardware integration

Page 13

18-742 25
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Speculative Threading on SMT

D
ec

od
e

R
en

am
e

Is
su

e

E
xe

cu
te

M
E

M

W
B

Thread 1

Fetch

Thread 2 Thread 3 Thread 4
Thread1

Thread2

Thread3

Thread4

18-742 26
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

IMT Hardware

Control Dependence
– Uses compiler information
– Minor change on branch prediction

Register communication
– Uses compiler information
– Leverages conventional renaming

Memory disambiguation
– Searches across ld/st queues

Naïve-IMT (N-IMT) → Minor mods to SMT

Page 14

18-742 27
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Issue Queue

Fetch Unit

Thread3 Thread4Thread2Thread1

Register File

Fu
nc

tio
na

l U
ni

ts

Descriptor
Cache

LSQ

Active List

Free

Rename

Program
Ordering

Program
Ordering

IMT Modification over SMT

Modified for IMT

18-742 28
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

What is wrong with N-IMT?

Fetches & executes like SMT
1. Uses ICOUNT fetch policy

→ Makes threads compete for resources
2. Maps single thread per context

→ Underutilizes resources
3. Incurs thread start-up delay

→ Copying register rename tables

Results in inefficient speculation!

Page 15

18-742 29
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Efficient Speculation: Optimized IMT

O-IMT uses 3 uArch mechanisms:
1. Resource- & Dep.-based fetch

→ Parallel fetch only from independent threads

2. Context multiplexing
→ Map multiple threads per context

3. Hide thread start-up overhead
(covered in the paper)

18-742 30
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Opt(1) Res.-Based Fetch: Example

Thread1

Thread2

Thread3

Thread4

5

Occupied
Registers

Free Registers:

5

5

5

Thread1

Thread2

Thread3

Thread4

+10

+10

+10

+10

+20

Occupied
Registers

Prealloc.
Registers

5

5

5

+10

+10

+5

+20 35

15

10

N-IMT O-IMT

Naïve resource allocation Careful resource allocation

604006010600

Page 16

18-742 31
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Opt(1) Dep.-Based Fetch: Example

ICOUNT fetches
threads equally

=> Stall

N-IMT O-IMT

Thread1

Thread2

Thread4
Thread5

Thread6

Thread3

Ignores dependences

Thread1

Thread2

Thread4
Thread5

Thread6

Sequential fetch
Dep. resolved
before fetch
=> No stall

Thread3

ICOUNT fetch

Serializes dependences

Loop-dependent

Loop-independent

ICOUNT fetch

18-742 32
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

R&D Fetch: Mechanism

Two predictors:

1. Resource predictor (DRP)
– Gauges resource availability
– Avoids thread squash

2. Dependence predictor (ITDH)
– Gauges thread dependence
– Avoids stalls

Page 17

18-742 33
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Opt(2): Context Multiplexing

Insufficient instruction overlap because
– Maps one thread to a context
– A few contexts (2-8) in SMT
– Small Multiscalar threads (15-20 inst/thread)
– Variable thread size (up to 100 insts)

But, [Hammond et al., ASPLOS98] [Vijaykumar et al., Micro98]

Larger threads → higher squash overhead

18-742 34
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Context Multiplexing: Mechanism

Splits context resources dynamically
Assigns multiple threads/context
As many as allowed by resources:

– Active list entries
– Ld/St queue entries

Increases effective thread size dynamically!

Page 18

18-742 35
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Methodology: Detailed Simulation

IMT & Superscalar

356-entry register file INT/FP
two fetch ports (multiple predictions for superscalar)
8-way issue
64-entry Issue queue

1 context
1024-entry active list,
256-entry LSQ

8 contexts
128-entry active list,
32-entry LSQ per context

SuperscalarIMT

18-742 36
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Base System Comparison

O-IMT

N-IMT

-40%

-20%

0%

20%

40%

60%

80%

S
pe

ed
up

 o
ve

r
S

up
er

sc
al

ar

bzip gap
gcc gzip mcf

parse
r

perl
twolf

vo
rte

x vp
r
ammp

applu art

equake
mesa

mgrid

six
tra

ck
sw

im

wupwise

Int Avg
.

Fp Avg
.

O-IMT better than N-IMT by 24%

Page 19

18-742 37
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Conclusions

Proposed IMT
– Maps speculative threading on SMT
– N-IMT performs worse than superscalar
– Identify inefficiencies of N-IMT
– Propose 3 uArch optimizations

Speedup over aggressive superscalar
→ On average 20% for INT, 29% for FP

