18-742
Lecture 25

Fetch Decode Queue Reg Execute Deachel Reg Retire
IMap Read Store Write
Buffer

Multithreading

Spring 2005
Prof. Babak Falsafi
http://www.ece.cmu.edu/~ece74

Wil 0

Regs

Slides developed in part by Prof. Falsafi from Mukherjee from Intel.

What & Why of Multithreading

What?

— Run multiple threads on the same core

Why?
— Key hardware resources are often idle for a single thread
— Large variability in IPC across threads
— E.g., desktop 2-4 IPC for 8-way, OLTP 0.4 IPC for 8-way

How?
— Multiple thread contexts
» Architectural: PC, SP, reg file
» Microarchitectural: Fetch, LSQ, ROB

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 2

Page 1

Core Sharing

Time sharing:
— Run one thread
— On along-latency operation (e.g., cache miss), switch
— Also known as “switch-on-miss” multithreading

Space sharing:

— Across pipeline depth
» Fetch and issue each cycle form a different thread

— Both across pipeline width and depth
» Fetch and issue each cycle from from multiple threads
» Policy to decide which to fetch gets complicated
» Also known as “simultaneous” multithreading
» E.g., Alpha 21464, IBM POWERS5

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742

Alpha 21264 Microprocessor

» Architectural Features
— First “Out-of-Order” Alpha
— Four-wide superscalar

* Performance
— World’s Fastest Microprocessor (www.spec.org, 11/17/99)

— 39 SPECINT95, 68 SPECFP95 @ 700 Mhz
» Intel Pentium Il @ 733 Mhz delivers 36 SPECINT95, 30 SPECFP95

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742

Page 2

Alpha Microprocessor Overview

Higher Performance

0.35um 0.18um 0.125pm
21264 21364 21464
EV6 EV7 EV8

\ 0.28pm \ 0.125um

21264 21364
EV67 EV78

\ 0.18um

21264
EV68

Lower Cost

1998 1999 2000 2001 2002 2003

First System Ship
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742

Alpha 21464 Goals

» Leadership single thread performance

— Higher operating frequency / better technology
— New microarchitecture
— Integrated memory interface (like 21364)

* Leadership multiprocessor performance

— Simultaneous Multithreading (with minimal change/cost)
— Integrated system / multiprocessor interface (like 21364)

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742

Page 3

Alpha 21464 Technology Overview

» Leading edge process technology — 1.2-2.0GHz
— 0.125pm CMOS
— SOl-compatible
— Cu interconnect
— low-k dielectrics

* Chip characteristics

- ~1.2v vdd
— ~250 Million transistors

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742

Alpha 21464 Architecture Overview

* Enhanced out-of-order execution

» 8-wide superscalar

» Large on-chip L2 cache

» Direct RAMBUS interface

* On-chip router for system interconnect

* Glueless, directory-based, ccNUMA
— for up to 512-way multiprocessing

* 4-way simultaneous multithreading (SMT)

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742

Page 4

Instruction Issue

Time

Reduced function unit utilization due to dependencies

(C) 2005 Babak Falsafi from Adve, Falsafi,

Hill, Lebeck, Reinhardt, Smith & Singh 18-742 9
Superscalar Issue
Time
Superscalar leads to more performance, but lower utilization
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 10

Page 5

Predicated Issue

Time

Adds to function unit utilization, but results are thrown away

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 11

Chip Multiprocessor

Time

Limited utilization when only running one thread

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 12

Page 6

Fine Grained Multithreading

Time

Intra-thread dependencies still limit performance

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

18-742

13

Simultaneous Multithreading

Time

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

18-742

Maximum utilization of function units by independent operations

14

Page 7

Basic Out-of-order Pipeline

Fetch Decod Queue Reg Execut Dcach Reg Retire
e/Map Read e e/Store Write
Buffer
Regs Drache Regs
Thread-
blind
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 15
SMT Pipeline
Fetch Decod Queue Reg Execut Dcach Reg Retire
e/Map Read e e/Stor Write
e
Buffer
Regs <E’ D—J Dcache Regs
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 16

Page 8

Changes for SMT

» Basic pipeline —unchanged

* Replicated resources
— Program counters
— Register maps

» Shared resources

— Register file (size increased)
Instruction queue
First and second level caches
Translation buffers
Branch predictor

(C) 2005 Babak Falsafi from Adve, Falsafi,

Hill, Lebeck, Reinhardt, Smith & Singh 18-742 17
Multiprogrammed workload
250%
200%
03 BT
150% w27
100% - 3T
041
50% -
0% -
Specint SpecFP Mixed Int/FP
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 18

Page 9

Decomposed SPEC95 Applications

250%

200%

150%

100%

miT
m2T
3T
041

50% -

0%

Turb3d Swm256 Tomcatv

(C) 2005 Babak Falsafi from Adve, Falsafi,

Hill, Lebeck, Reinhardt, Smith & Singh 18-742 19
Multithreaded Applications
300%
250%
200% ,_*
miT
150%] — moT
100% - | B4T
50% - —
0% 1 —
Barnes Chess Sort TP
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 20

Page 10

Scaling Processor Performance

Increasing number of transistors

Need designs to:
1. Extract parallelism
2. Avoid program modification
3. Allow for clock scalability

Simultaneous Multithreading
— Single wide-issue out-of-order pipe
— Runs “explicitly-parallel” threads together
— Shared pipeline resources
- E.g., Pentium 4, Alpha 21464, Power 5

But,

want to run sequential programs faster!

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742

21

Solution: Speculative Threading on SMT

Peal off candidate code blocks
Execute them speculatively
— Enforce sequential execution

But,
Speculative threads # SMT threads!

Must control pipeline resource sharing

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742

22

Page 11

Implicitly-Multithreaded processors [Park et al., ISCA’03]

Speculative threading on SMT
Compiler-specified threads (Multiscalar)
Hardware speculation + verification

3 uArch optimizations to throttle sharing

Speedup over superscalar by 20%-29%

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 23

IMT Architecture

Compiler
— Selects candidate threads
— Provides register + control information

Hardware
— Control Dependence
— Register communication
— Memory disambiguation

Compiler + Hardware integration

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 24

Page 12

Speculative Threading on SMT

dhreadt Thread1 Thread2 Thread3 Thread 4

Thread2

Thread3

Thread4

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 25

IMT Hardware

Control Dependence
— Uses compiler information
— Minor change on branch prediction

Register communication
— Uses compiler information
— Leverages conventional renaming

Memory disambiguation
— Searches across Id/st queues

Naive-IMT (N-IMT) — Minor mods to SMT

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 26

Page 13

IMT Modification over SMT

Thread! Thread2 Thread3 Thread4 B Modified for IMT

| l } }

Descriptor .
Cache Fetch Unit

IRename — | Issue Queue

[TTTTTTTTT
.Free

Register File

Program
Ordering

Program
Ordering

ltive List

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 27

What is wrong with N-IMT?

Fetches & executes like SMT
1. Uses ICOUNT fetch policy

— Makes threads compete for resources
2. Maps single thread per context
— Underutilizes resources

3. Incurs thread start-up delay
— Copying register rename tables

Results in inefficient speculation!

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 28

Page 14

Efficient Speculation: Optimized IMT

O-IMT uses 3 uArch mechanisms:

1. Resource- & Dep.-based fetch
— Parallel fetch only from independent threads
2. Context multiplexing
— Map multiple threads per context
3. Hide thread start-up overhead
(covered in the paper)

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742

29

Opt(1) Res.-Based Fetch: Example

T 0T

Occupied Occupied Prealloc.
Registers Registers Registers
Thread1 5 +10 +20 Thread1 5 +10 +20 35
Thread2 5 +10 Thread2 5 +10 15
Thread3 5 45 10
Thread4
Naive resource allocation Careful resource allocation
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 30

Page 15

Opt(1) Dep.-Based Fetch: Example

N-IMT O-IMT
Loop-dependent A
Thread1 Thread1 Sequential fetch
ICOUNT fetches Dep. resolved
Thread2 threads equally Thread2| - before fetch
=> Stall => No stall
Thread4 | ICOUNT fetch | T"reads ICOUNT fetch
Thread6
Thread6 Loop-independent
Ignores dependences Serializes dependences
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 31

R&D Fetch: Mechanism

Two predictors:

1. Resource predictor (DRP)

— Gauges resource availability
— Avoids thread squash

2. Dependence predictor (ITDH)
— Gauges thread dependence
— Avoids stalls

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 32

Page 16

Opt(2): Context Multiplexing

Insufficient instruction overlap because
— Maps one thread to a context
— Afew contexts (2-8) in SMT
— Small Multiscalar threads (15-20 inst/thread)
— Variable thread size (up to 100 insts)

But, [Hammond et al., ASPLOS98] [Vijaykumar et al., Micro98]
Larger threads — higher squash overhead

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742

33

Context Multiplexing: Mechanism

Splits context resources dynamically
Assigns multiple threads/context

As many as allowed by resources:
— Active list entries
— Ld/St queue entries

Increases effective thread size dynamically!

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742

34

Page 17

Methodology: Detailed Simulation

IMT Superscalar
8 contexts 1 context
128-entry active list, 1024-entry active list,
32-entry LSQ per context 256-entry LSQ

IMT & Superscalar

356-entry register file INT/FP

two fetch ports (multiple predictions for superscalar)
8-way issue

64-entry Issue queue

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 35

Base System Comparison

S 80%
3 O N-IMT
$» 60%
) B O-IMT
S 40%
n
5 20%
3
S 0%
=]
D -20%
3
o -40% . © o« N N
IR P PV o PO KR P 3 PG S WO
© o be‘ T PN NN 6‘%\{.\‘ 2 N \&V;(QV“
O-IMT better than N-IMT by 24%
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742 36

Page 18

Conclusions

Proposed IMT
— Maps speculative threading on SMT
— N-IMT performs worse than superscalar
— lIdentify inefficiencies of N-IMT
— Propose 3 uArch optimizations

Speedup over aggressive superscalar
— On average 20% for INT, 29% for FP

(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh 18-742

37

Page 19

