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Readings

Papers and lecture notes only

Reader 7
• D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. 

L. Lo, and R. L. Stamm, Exploiting Choice: Instruction 
Fetch and Issue on an Implementable Simultaneous 
Multithreading Processor, ISCA 1996. 

• J. Lo, L.A. Barroso, S. Eggers, K. Gharachorloo, H. 
Levy, and S. Parekh, An Analysis of Database 
Workload Performance on Simultaneous 
Multithreaded Processors, ISCA 1998. 
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Announcements

Monday:
• We meet at 2:30
• Comp. arch. talk at 4pm in HH 1112

Mike Taylor
RAW Group at MIT

Scalar Operand Networks:
Enabling Scalable, Parallel Microprocessors
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Speculative Threading

Also known as Speculative Multithreading or Thread-
Level Speculation

• Take a sequential program
• Start with the dynamic instruction stream
• Peal off candidate basic blocks
• Execute them speculatively in parallel on different 

cores
– Why speculatively? 

Lots of academic projects (including Wisc., CMU, 
Stanford, Illinois)

Two industrial products/prototypes (Fujitsu, Sun)
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Multiscalar Execution
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What are good candidate points to peal? 

Superscalar’s big bottleneck:
• Branch predictability
• Predicts all branches the same way

Key observation:
• Loop branches are more predictable that if-then-else 

branches
• Peal off code at loop branch boundaries

– If-then-else branches remain within thread
– If they mispredict locally, they do not affect thread-level control-flow

• Peal off code at function call boundaries
• Compiler annotates candidate thread spawn points 
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Example: Loop

CODE

for (i=0; i<n; i++)
{

…
if (ugly condition)
{

…..
}
….

}

i=0
…

if (ugly condition)
{

…..
}
….

i=1
…

if (ugly condition)
{

…..
}
….

Fetch
Decode
Rename

Issue
Execute

MEM
WB

Fetch
Decode
Rename

Issue
Execute

MEM
WB

CPU0 CPU1
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Sequential Execution Semantics (SES)

Do not confuse with sequential consistency
SES states:
• Program outcome should be as if it was run on one 

processor
• There are SES control-flow and data-flow 

dependences between threads on multiple cores

But, conventional multiprocessors have 
• Independent control flow
• Independent data flow
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Example Data-Flow Dependence

for i = 1 to 5
{

…
… = x
…
x = …
…

}
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Example: Loop-Carried Dependence

for i = 1 to 5
{

…
… = x
…
x = …
…

}
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Example ctd.

for
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Example: Fork

for

2 3 4Iteration 1
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Example ctd.

for

… = x
… = x … = x … = x

2 3 4Iteration 1
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Example ctd.

for

… = x
… = x … = x … = x

2 3 4Iteration 1
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Example ctd.

for

… = x
… = x … = x … = x

x = …
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Example: Data Hazard

for

… = x
… = x … = x … = x

x = …
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Example: Squash

for

… = x
… = x … = x … = x

x = …
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Example: Restart / Rollback

for

… = x
… = x … = x … = x

x = …

… = x … = x … = x
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Example: Synchronizing the Accesses in HW

for

… = x

… = x

… = x

x = …

x = …

x = …

X Is either:
• Register allocated
• In memory

Register-allocated dependences:
• Known at compile time
• Compiler passes the info to HW
• Need HW for communication 

values and synchronizing the 
register accesses

In-memory dependences:
• May not be known at compiler 

time
• Not clear where the 

sources/sinks are 
• Need more sophisticated HW
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Multiscalar Anatomy
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Register Flow

Reminder: compiler annotates thread spawn points
• Embedded thread “header” information in binary
• Register “def” and “use” masks for each thread
• Explicit register release instructions after last “def”
• Register values travel on the “register ring” between 

SES-ordered threads
• Upon thread invocation, first “use” of register blocks 

until a value arrives from a prior thread
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Memory Flow

Much more complicated
Compiler knows nothing
Each core does independent loads/stores out of a 

shared L1 cache
– What is wrong with this?

A special structure called “ARB” tracks all loads/stores 
from cores

– Guarantees SES order

Unlike register def/use synchronization
– By default, memory operations go speculatively
– A misspeculation tagged by ARB rolls back thread
– A Memory Dependence Predictor (remember 741?) synchronizes 

predictable load/store communications to avoid overhead
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Distributed Memory Disambiguation

Conventional cores:
– Have cache hierarchies 
– Disambiguate memory in a centralized structure (LSQ)

Multiscalar cores:
– Share L1
– Disambiguate memory in a centralized structure (ARB)

Big deviation from a CMP
– Multiscalar solution not scalable

Subsequent proposals (Wisc, CMU, Stanford, Illinois):
– Per-core cache hierarchy
– Distributed structure for memory disambiguation 
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What is so hard about memory disambiguation 
across cores?

Think private writeback L1s and a shared L2
– Need coherence among L1s

But, also need SES memory dependence order

How do we change the coherence protocol to 
implement SES dependence order?

Requirements (changes to CMP):
– Common case of cache hit should go fast
– Cache misses should not take much longer than in a CMP
– No sequential searches in caches upon thread invocation, 

completion or rollback
– Coherence protocol needs tens of states (see SVC by Gopal et al.)
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Stanford Hydra

Made the problem much simpler
– At a performance cost?

No need for register communication
– Communicate register values through memory
– As in conventional register load/spills

Make the L1 caches writethrough
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Data Speculation in Hydra: Requirements (I)

Forward data between parallel threads
Detect violations when reads occur too early

Iteration i+1

read X

read X

read X

write X

Iteration i

read X

read X

read X

write X

FORWARDING 

VIOLATION

Original Sequential
Loop Speculatively Parallelized Loop

Forwarding 
from write:

Iteration i+1

read X

read X

read X

write X

T
IM

E

Iteration i

read X

read X

read X

write X
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Data Speculation in Hydra: Requirements (II)

Safely discard bad state after violation
Correctly retire speculative state

Iteration i+1

read X

T
IM

E

Iteration i

write X

write A

write B

TRASH

Iteration i+1

Iteration i

write X

write X

PERMANENT 
STATE

21

Writes after Violations Writes after Successful Iterations
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Data Speculation in Hydra: Requirements (III)

Maintain multiple “views” of memory

Iteration i+1

T
IM

E

Iteration i

read  X

write  X

write  X

read  X

Multiple Memory “Views”

Iteration i+2

read  X
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Hydra Speculation Support

Write bus & L2 buffers forward
“Read” L1 tags for violations,  “Dirty” L1 tags and wbuff provide backup
Wbuff reorder & retire spec. state
Speculation coprocessors to control threads

Write-through Bus (64b)

Read/Replace Bus (256b)

On-chip L2  Cache

DRAM Main Memory

Rambus Memory Interface

CPU 0

L1 Inst.  
Cache

Speculation Write Buffers

CPU 1

L1 Inst.  
Cache

CPU 2

L1 Inst.  
Cache

CPU 3

L1 Inst.  
Cache

I/O Devices

I/O Bus Interface

CPU 0 Memory Controller CPU 1 Memory Controller CPU 2 Memory Controller CPU 3 Memory Controller

Centralized Bus Arbitration Mechanisms

CP2 CP2 CP2 CP2

# 0 # 1 # 2 # 3 retire

L1 Data Cache &  
Speculation Bits

L1 Data Cache &  
Speculation Bits

L1 Data Cache &  
Speculation Bits

L1 Data Cache &  
Speculation Bits

18-742 30
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Speculative Reads

L1 miss

L2 and write buffers are checked in parallel
Latest written values from a cache block are pulled in by 

priority encoders on each byte (priority A-D)

CPU 
#i

CPU 
#i-1

CPU 
#i-2

CPU 
#i+1

Nonspeculative 
“Head” CPU

Speculative
earlier CPU

Speculative 
later CPU“Me”

L1 
Cache

12

Write 
Buffer

Write 
Buffer

Write 
Buffer

Write 
Buffer

C B A

L2 
Cache

D

L1 hit

Read bits are set
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Speculative Writes

A CPU writes to its L1 cache & write buffer
“Earlier” CPUs invalidate our L1 & cause RAW hazard checks
“Later” CPUs just pre-invalidate our L1
Non-speculative write buffer drains out into the L2

CPU 
#i

CPU 
#i-1

CPU 
#i-2

CPU 
#i+1

Nonspeculative 
“Head” CPU “Me”

L1 
Cache

12 3

L2 
Cache

4

Invalidations & 
RAW Detection Pre-invalidations

Write 
Bus

Write 
Buffer

Write 
Buffer

Write 
Buffer

Write 
Buffer

Speculative
earlier CPU

Speculative 
later CPU
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Creating Speculative Threads

• Speculative loops
– for and while loop iterations
– Typically one speculative thread per iteration

• Speculative procedures
– Execute code after procedure speculatively
– Procedure calls generate a speculative thread

• Compiler support
– C source to source translator 
– Pfor, pwhile

– Analyze loop body and globalize any local variables that could 
cause loop-carried dependencies
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Base Speculative Thread Performance

– Entire applications
– GCC 2.7.2 -O2
– 4 single-issue 

processors
– Accurate modeling of 

all aspects of Hydra 
architecture and real 
runtime system
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Improving Speculative Runtime System

• Procedure support adds overhead to loops
– Threads are not created sequentially
– Dynamic thread scheduling necessary
– Start and end of loop: 75 cycles
– End of iteration: 80 cycles

• Performance
– Best performing speculative applications use loops
– Procedure speculation often lowers performance
– Need to optimize RTS for common case

• Lower speculative overheads
– Start and end of loop: 25 cycles
– End of iteration: 12 cycles (almost a factor of 7)
– Limit procedure speculation to specific procedures
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Improved Speculative Performance

– Improves performance of 
all applications

– Most improvement for 
applications with fine-
grained threads

– Eqntott uses procedure 
speculation
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Feedback and Code Transformations

• Feedback tool
– Collects violation statistics (PCs, frequency, work lost)
– Correlates read and write PC values with source code

• Synchronization
– Synchronize frequently occurring violations
– Use non-violating loads

• Code Motion
– Find dependent load-stores
– Move loads down in thread
– Move stores up in thread
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Code Motion

– Rearrange reads and writes to increase parallelism
– Delay reads and advance writes
– Create local copies to allow earlier data forwarding

read x

write x

read x

write x

iteration i

iteration i+1

read x
write x read x

write x

iteration i

iteration i+1

read x read x’

read x’
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Optimized Speculative Performance

Base performance

Optimized RTS with no 
manual intervention

Violation statistics used to 
manually transform code
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Size of Speculative Write State

– Max size determines size of 
write buffer for max 
performance

– Non-head processor stalls when 
write buffer fills up

– Small write buffers (< 64 lines) 
will achieve good performance

compress 24

eqntott 40

grep 11

m88ksim 28

wc 8

ijpeg 32

mpeg 56

alvin 158

cholesky 4

ear 82

simplex 14

32 byte cache lines

Max  no. lines of write state
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Hydra Prototype

– Design based on Integrated Device Technology (IDT) RC32364
– 88 mm2 in 0.25µm  with 8 KB I, D and 128 KB L2

8 m
m

11 mm


