
Page 1

18-742
Lecture 23

Speculative
Threading on
CMPs
Spring 2005
Prof. Babak Falsafi
http://www.ece.cmu.edu/~ece742

Slides developed in part by Prof. Falsafi from Hill, Slides developed in part by Prof. Falsafi from Hill, OlukotunOlukotun, , OplingerOplinger and and
Stets of Carnegie Mellon University, Google, Stanford UniversityStets of Carnegie Mellon University, Google, Stanford University, and , and
University of Wisconsin.University of Wisconsin.

8 m
m

11 mm

18-742 2
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Readings

Papers and lecture notes only

Reader 7
• D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J.

L. Lo, and R. L. Stamm, Exploiting Choice: Instruction
Fetch and Issue on an Implementable Simultaneous
Multithreading Processor, ISCA 1996.

• J. Lo, L.A. Barroso, S. Eggers, K. Gharachorloo, H.
Levy, and S. Parekh, An Analysis of Database
Workload Performance on Simultaneous
Multithreaded Processors, ISCA 1998.

Page 2

18-742 3
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Announcements

Monday:
• We meet at 2:30
• Comp. arch. talk at 4pm in HH 1112

Mike Taylor
RAW Group at MIT

Scalar Operand Networks:
Enabling Scalable, Parallel Microprocessors

18-742 4
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Speculative Threading

Also known as Speculative Multithreading or Thread-
Level Speculation

• Take a sequential program
• Start with the dynamic instruction stream
• Peal off candidate basic blocks
• Execute them speculatively in parallel on different

cores
– Why speculatively?

Lots of academic projects (including Wisc., CMU,
Stanford, Illinois)

Two industrial products/prototypes (Fujitsu, Sun)

Page 3

18-742 5
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Thread1

Thread2

Thread3

Thread4

Fetch

Decode

Rename

Issue

Execute

MEM

WB

Thread1
Thread2

Thread3
Thread4

Fetch

Decode

Rename

Issue

Execute

MEM

WB

Fetch

Decode

Rename

Issue

Execute

MEM

WB

Fetch

Decode

Rename

Issue

Execute

MEM

WB

P0 P1 P2 P3

Multiscalar Execution

18-742 6
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

What are good candidate points to peal?

Superscalar’s big bottleneck:
• Branch predictability
• Predicts all branches the same way

Key observation:
• Loop branches are more predictable that if-then-else

branches
• Peal off code at loop branch boundaries

– If-then-else branches remain within thread
– If they mispredict locally, they do not affect thread-level control-flow

• Peal off code at function call boundaries
• Compiler annotates candidate thread spawn points

Page 4

18-742 7
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Example: Loop

CODE

for (i=0; i<n; i++)
{

…
if (ugly condition)
{

…..
}
….

}

i=0
…

if (ugly condition)
{

…..
}
….

i=1
…

if (ugly condition)
{

…..
}
….

Fetch
Decode
Rename

Issue
Execute

MEM
WB

Fetch
Decode
Rename

Issue
Execute

MEM
WB

CPU0 CPU1

18-742 8
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Sequential Execution Semantics (SES)

Do not confuse with sequential consistency
SES states:
• Program outcome should be as if it was run on one

processor
• There are SES control-flow and data-flow

dependences between threads on multiple cores

But, conventional multiprocessors have
• Independent control flow
• Independent data flow

Page 5

18-742 9
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Example Data-Flow Dependence

for i = 1 to 5
{

…
… = x
…
x = …
…

}

18-742 10
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Example: Loop-Carried Dependence

for i = 1 to 5
{

…
… = x
…
x = …
…

}

Page 6

18-742 11
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Example ctd.

for

18-742 12
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Example: Fork

for

2 3 4Iteration 1

Page 7

18-742 13
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Example ctd.

for

… = x
… = x … = x … = x

2 3 4Iteration 1

18-742 14
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Example ctd.

for

… = x
… = x … = x … = x

2 3 4Iteration 1

Page 8

18-742 15
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Example ctd.

for

… = x
… = x … = x … = x

x = …

18-742 16
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Example: Data Hazard

for

… = x
… = x … = x … = x

x = …

Page 9

18-742 17
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Example: Squash

for

… = x
… = x … = x … = x

x = …

18-742 18
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Example: Restart / Rollback

for

… = x
… = x … = x … = x

x = …

… = x … = x … = x

Page 10

18-742 19
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Example: Synchronizing the Accesses in HW

for

… = x

… = x

… = x

x = …

x = …

x = …

X Is either:
• Register allocated
• In memory

Register-allocated dependences:
• Known at compile time
• Compiler passes the info to HW
• Need HW for communication

values and synchronizing the
register accesses

In-memory dependences:
• May not be known at compiler

time
• Not clear where the

sources/sinks are
• Need more sophisticated HW

18-742 20
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Multiscalar Anatomy

Page 11

18-742 21
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Register Flow

Reminder: compiler annotates thread spawn points
• Embedded thread “header” information in binary
• Register “def” and “use” masks for each thread
• Explicit register release instructions after last “def”
• Register values travel on the “register ring” between

SES-ordered threads
• Upon thread invocation, first “use” of register blocks

until a value arrives from a prior thread

18-742 22
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Memory Flow

Much more complicated
Compiler knows nothing
Each core does independent loads/stores out of a

shared L1 cache
– What is wrong with this?

A special structure called “ARB” tracks all loads/stores
from cores

– Guarantees SES order

Unlike register def/use synchronization
– By default, memory operations go speculatively
– A misspeculation tagged by ARB rolls back thread
– A Memory Dependence Predictor (remember 741?) synchronizes

predictable load/store communications to avoid overhead

Page 12

18-742 23
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Distributed Memory Disambiguation

Conventional cores:
– Have cache hierarchies
– Disambiguate memory in a centralized structure (LSQ)

Multiscalar cores:
– Share L1
– Disambiguate memory in a centralized structure (ARB)

Big deviation from a CMP
– Multiscalar solution not scalable

Subsequent proposals (Wisc, CMU, Stanford, Illinois):
– Per-core cache hierarchy
– Distributed structure for memory disambiguation

18-742 24
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

What is so hard about memory disambiguation
across cores?

Think private writeback L1s and a shared L2
– Need coherence among L1s

But, also need SES memory dependence order

How do we change the coherence protocol to
implement SES dependence order?

Requirements (changes to CMP):
– Common case of cache hit should go fast
– Cache misses should not take much longer than in a CMP
– No sequential searches in caches upon thread invocation,

completion or rollback
– Coherence protocol needs tens of states (see SVC by Gopal et al.)

Page 13

18-742 25
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Stanford Hydra

Made the problem much simpler
– At a performance cost?

No need for register communication
– Communicate register values through memory
– As in conventional register load/spills

Make the L1 caches writethrough

18-742 26
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Data Speculation in Hydra: Requirements (I)

Forward data between parallel threads
Detect violations when reads occur too early

Iteration i+1

read X

read X

read X

write X

Iteration i

read X

read X

read X

write X

FORWARDING

VIOLATION

Original Sequential
Loop Speculatively Parallelized Loop

Forwarding
from write:

Iteration i+1

read X

read X

read X

write X

T
IM

E

Iteration i

read X

read X

read X

write X

Page 14

18-742 27
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Data Speculation in Hydra: Requirements (II)

Safely discard bad state after violation
Correctly retire speculative state

Iteration i+1

read X

T
IM

E

Iteration i

write X

write A

write B

TRASH

Iteration i+1

Iteration i

write X

write X

PERMANENT
STATE

21

Writes after Violations Writes after Successful Iterations

18-742 28
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Data Speculation in Hydra: Requirements (III)

Maintain multiple “views” of memory

Iteration i+1

T
IM

E

Iteration i

read X

write X

write X

read X

Multiple Memory “Views”

Iteration i+2

read X

Page 15

18-742 29
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Hydra Speculation Support

Write bus & L2 buffers forward
“Read” L1 tags for violations, “Dirty” L1 tags and wbuff provide backup
Wbuff reorder & retire spec. state
Speculation coprocessors to control threads

Write-through Bus (64b)

Read/Replace Bus (256b)

On-chip L2 Cache

DRAM Main Memory

Rambus Memory Interface

CPU 0

L1 Inst.
Cache

Speculation Write Buffers

CPU 1

L1 Inst.
Cache

CPU 2

L1 Inst.
Cache

CPU 3

L1 Inst.
Cache

I/O Devices

I/O Bus Interface

CPU 0 Memory Controller CPU 1 Memory Controller CPU 2 Memory Controller CPU 3 Memory Controller

Centralized Bus Arbitration Mechanisms

CP2 CP2 CP2 CP2

0 # 1 # 2 # 3 retire

L1 Data Cache &
Speculation Bits

L1 Data Cache &
Speculation Bits

L1 Data Cache &
Speculation Bits

L1 Data Cache &
Speculation Bits

18-742 30
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Speculative Reads

L1 miss

L2 and write buffers are checked in parallel
Latest written values from a cache block are pulled in by

priority encoders on each byte (priority A-D)

CPU
#i

CPU
#i-1

CPU
#i-2

CPU
#i+1

Nonspeculative
“Head” CPU

Speculative
earlier CPU

Speculative
later CPU“Me”

L1
Cache

12

Write
Buffer

Write
Buffer

Write
Buffer

Write
Buffer

C B A

L2
Cache

D

L1 hit

Read bits are set

Page 16

18-742 31
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Speculative Writes

A CPU writes to its L1 cache & write buffer
“Earlier” CPUs invalidate our L1 & cause RAW hazard checks
“Later” CPUs just pre-invalidate our L1
Non-speculative write buffer drains out into the L2

CPU
#i

CPU
#i-1

CPU
#i-2

CPU
#i+1

Nonspeculative
“Head” CPU “Me”

L1
Cache

12 3

L2
Cache

4

Invalidations &
RAW Detection Pre-invalidations

Write
Bus

Write
Buffer

Write
Buffer

Write
Buffer

Write
Buffer

Speculative
earlier CPU

Speculative
later CPU

18-742 32
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Creating Speculative Threads

• Speculative loops
– for and while loop iterations
– Typically one speculative thread per iteration

• Speculative procedures
– Execute code after procedure speculatively
– Procedure calls generate a speculative thread

• Compiler support
– C source to source translator
– Pfor, pwhile

– Analyze loop body and globalize any local variables that could
cause loop-carried dependencies

Page 17

18-742 33
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Base Speculative Thread Performance

– Entire applications
– GCC 2.7.2 -O2
– 4 single-issue

processors
– Accurate modeling of

all aspects of Hydra
architecture and real
runtime system

co
m

pr
es

s

eq
nt

ot
t

gr
ep

m
88

ks
im w
c

ijp
eg

m
pe

g2

al
vi

n

ch
ol

es
ky ea

r

si
m

pl
ex

sp
ar

se
1.

3

0

0.5

1

1.5

2

2.5

3

3.5

4
S

pe
ed

up

Base

18-742 34
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Improving Speculative Runtime System

• Procedure support adds overhead to loops
– Threads are not created sequentially
– Dynamic thread scheduling necessary
– Start and end of loop: 75 cycles
– End of iteration: 80 cycles

• Performance
– Best performing speculative applications use loops
– Procedure speculation often lowers performance
– Need to optimize RTS for common case

• Lower speculative overheads
– Start and end of loop: 25 cycles
– End of iteration: 12 cycles (almost a factor of 7)
– Limit procedure speculation to specific procedures

Page 18

18-742 35
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Improved Speculative Performance

– Improves performance of
all applications

– Most improvement for
applications with fine-
grained threads

– Eqntott uses procedure
speculation

co
m

pr
es

s

eq
nt

ot
t

gr
ep

m
88

ks
im w
c

ijp
eg

m
pe

g2

al
vi

n

ch
ol

es
ky ea

r

si
m

pl
ex

sp
ar

se
1.

3

0

0.5

1

1.5

2

2.5

3

3.5

4

S
pe

ed
up

Base

Optimized RTS

18-742 36
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Feedback and Code Transformations

• Feedback tool
– Collects violation statistics (PCs, frequency, work lost)
– Correlates read and write PC values with source code

• Synchronization
– Synchronize frequently occurring violations
– Use non-violating loads

• Code Motion
– Find dependent load-stores
– Move loads down in thread
– Move stores up in thread

Page 19

18-742 37
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Code Motion

– Rearrange reads and writes to increase parallelism
– Delay reads and advance writes
– Create local copies to allow earlier data forwarding

read x

write x

read x

write x

iteration i

iteration i+1

read x
write x read x

write x

iteration i

iteration i+1

read x read x’

read x’

18-742 38
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Optimized Speculative Performance

Base performance

Optimized RTS with no
manual intervention

Violation statistics used to
manually transform code

co
m

pr
es

s

eq
nt

ot
t

gr
ep

m
88

ks
im w

c

ijp
eg

m
pe

g2

al
vi

n

ch
ol

es
ky ea

r

si
m

pl
ex

sp
ar

se
1.

3

0

0.5

1

1.5

2

2.5

3

3.5

4

S
pe

ed
up

Page 20

18-742 39
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Size of Speculative Write State

– Max size determines size of
write buffer for max
performance

– Non-head processor stalls when
write buffer fills up

– Small write buffers (< 64 lines)
will achieve good performance

compress 24

eqntott 40

grep 11

m88ksim 28

wc 8

ijpeg 32

mpeg 56

alvin 158

cholesky 4

ear 82

simplex 14

32 byte cache lines

Max no. lines of write state

18-742 40
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Hydra Prototype

– Design based on Integrated Device Technology (IDT) RC32364
– 88 mm2 in 0.25µm with 8 KB I, D and 128 KB L2

8 m
m

11 mm

