
Page ‹#›

18-742
Lecture 17

Coherence
Optimization
Spring 2005
Prof. Babak Falsafi
http://www.ece.cmu.edu/~ece742

Slides developed in part by Profs. Adve, Falsafi, Hill, Slides developed in part by Profs. Adve, Falsafi, Hill, LebeckLebeck, Reinhardt,, Reinhardt,
Smith, and Singh of University of Illinois, Carnegie Mellon University,Smith, and Singh of University of Illinois, Carnegie Mellon University,
University of Wisconsin, Duke University, University of Michigan, andUniversity of Wisconsin, Duke University, University of Michigan, and
Princeton University.Princeton University.

time

reader directory writer

read
fetch

writeback
fillRe

ad
 la

te
nc

y

18-742 2
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Readings

Chapter 9 of Culler & Singh

Reader 5:
• A.-C. Lai and B. Falsafi, Selective, accurate, and

timely self-invalidation using last-touch prediction,
ISCA 2000.

• M. M. K. Martin, M. D. Hill, and D. A. Wood, Token
Coherence: Decoupling Performance and
Correctness, ISCA 2003.

• C. Amza, et al., TreadMarks: Shared Memory
Computing on Networks of Workstations, IEEE
Computer 29(2): 18-28, 1996.

Page ‹#›

18-742 3
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Announcements

Status report:
• Actual preliminary results
• Not, infrastructure bugs

Course evaluations:
• Feedback given on graded homework

18-742 4
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Types of Coherence Optimization

Memory consistency models:
– Hide store latency (via annotation, speculation, or both)

Other optimization types:
• Hide latency

– Prefetching
– Forwarding

• Coherence optimization
– Reduce traffic
– Overlap transitions

» Request forwarding
» Collecting acknowledgements at writer

– Reduce transitions
» Sharing prediction

– Hide transitions
» Dynamic self-invalidation

Page ‹#›

18-742 5
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Example Shared Read in DSM

time

reader directory writer

read
fetch

writeback
fillRe

ad
 la

te
nc

y

18-742 6
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Example Prefetched Shared Read in DSM

time

reader directory writer

prefetch
fetch

writeback
fill

Re
ad

 la
te

nc
y

read

Page ‹#›

18-742 7
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Prefetching Revisited

Same issues as uniprocessor:
• “what” to prefetch is difficult
• “when” to prefetch is even more difficult

– Distances are larger
– May pollute caches or may prefetch too late (as before)
– But, may also take data away from current user (multiprocessor)

Can Forward too:
• same problems as prefetching
• “who” and “When”

Can be done in SW, HW or both

18-742 8
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Reduce Traffic

Enhanced caching:
• R-NUMA

Reduce false sharing:
• Pad data structures (what is wrong with this?)
• Spatial pattern prediction [Chen et al.]
• Coherence decoupling

– Value prediction assuming old (stale) values are still in the cache

Page ‹#›

18-742 9
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Overlapping Transitions: Request Forwarding

time

reader directory writer

read

fetch

writeback

fill

Re
ad

 la
te

nc
y

reader directory writer

read

fetch

writebackfill

18-742 10
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Request Forwarding

Also called a “3-hop” rather than a “4-hop” protocol
• Implemented in Stanford DASH

– Got it right in SGI Origin 2000

• Causes deadlock if not implemented correctly
• Why?

Page ‹#›

18-742 11
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Overlapping Transitions:
Optimizing Acknowledgements

time

writer directory reader i

upgrade

inval

ack

ack

Up
gr

ad
e

la
te

nc
y

writer directory reader i

upgrade

inval

ack

n acks

Up
gr

ad
e

la
te

nc
y

complete

18-742 12
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Optimizing Acks and Invals

Collecting Acks at Writer
• Distributes the load
• Obviates the need for bookkeeping at directory
• E.g., Piranha CMP

Eager response to upgrade:
• Directory can respond and inval in background
• Has memory order implications

– Stores commit but are not completed!

• Implemented in Compaq/HP AlphaServer GS320

Page ‹#›

18-742 13
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Coherence Optimization:
Example Migratory Sharing

 Proc 1 Proc2 Proc 3
 Read X
 Write X

Read X
Write X

 Read X
 Write X

18-742 14
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Migratory Sharing Transitions

Every Read/Write pair results in:
• A remote read miss
• Followed by an upgrade request

Coherence FSM can keep track of this
At the directory:
• Two back-to-back requests for Read/upgrade by

same proc
• Make a transition to “migratory Modified” state
• Upon a read, invalidate current copy
• Return a writable copy (i.e., M state)

Page ‹#›

18-742 15
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Coherence Optimization: Example
Producer/Consumer Sharing

 Proc 1 Proc2 Proc 3
 Read X
 Write X

Read X

 Read X

 Read X
 Write X

Read X

 Read X

18-742 16
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Producer/Consumer Transitions

Simple optimization:
• Upon read miss, “downgrade” rather than invalidate

“writer”
– Distinguish this transition from the migratory case

• Results in one upgrade from writer, followed by
reads by others

More sophisticated optimizations:
• Keep track of prior readers
• Forward to all readers upon the first read

Page ‹#›

18-742 17
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Shortcomings of Coherence Optimizations

Optimizations built directly into coherence transitions
– e.g., migratory sharing in SGI Origin
– Not a great idea!
– Coherence protocols are extremely complex machines
– Hard to verify even basic protocols
– Each optimization -> extra complexity -> state explosion!

Plus
• Must only target simple sharing patterns
• Can only learn/optimize one sharing pattern at a time

– Data structures may exhibit multiple patterns throughout the
program

18-742 18
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Recent Proposals: Table-Based Predictors

Decouple predictor from protocol
+ learn multiple sharing patterns simultaneously
+ protocol hints no impact on state machine
– may require large storage overhead

M

S

I

MM

MI

M

S

I

Predictor

read miss on X
from P1

Migratory!

1. Go to S

2. Then go to M

Page ‹#›

18-742 19
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Memory Sharing Predictor (MSP) [Lai et al.]

2-level table-based predictor at each directory
• Keeps a history of prior messages
• For each history, keeps a sharing outcome
• E.g., an upgrade by P3 led to reads by P1 and P2

prediction

History Table

(upgrade,P3) (upgrade,P3) (read,[P1,P2])
(read,[P1,P2]) (upgrade,P3)

Pattern Table

(read,[P1,P2])
block 0x100

18-742 20
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Upgrade Predictor [Kaxiras et al.]

PC-indexed table-based predictor
• On a load, store address
• If count saturated, upgrade
• On a subsequent store, increment count
• On invalidations, decrement count

Upgrade!

Load address 2-bit counter

Load PC

Page ‹#›

18-742 21
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Hiding Transitions: Dynamic Self-Invalidation

time

reader directory writer

read

fetch

writeback

fill

Re
ad

 la
te

nc
y

reader directory writer

read

self-inval

fill

18-742 22
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Trace-based Downgrade Prediction

Predicts last store to modified cache block

• Records a trace of stores to a block
– From store miss to last store

• When trace recurs, predict last store

store
missPC1: st X

last
store

PC2: st X

PC3: st X

PC1: st X

load by
other node

Trace =
{PC1,PC2,PC3,PC1}

 Timely downgradesTimely downgrades
–– Triggered immediately on last storeTriggered immediately on last store

 Good prediction: 3-hop Good prediction: 3-hop 2-hop 2-hop
 MispredictionMisprediction: store miss: store miss

–– Relaxed memory model hides penaltyRelaxed memory model hides penalty

Page ‹#›

18-742 23
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

f(PC1,PC2…)
(11)sig.

• 2-level predictor, derived from Last Touch Predictor
– [Lai & Falsafi]

History Table

address

Signature Table

Traces of
store PCs

2-bit
saturating
counters

Predictor Structure (Recall Dead-Block Predictor)

Fixed-length encoding

signature downgrade?

18-742 24
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Methodology

barnes, em3d, moldyn, ocean, waterScientific Apps

SPECweb99, Apache 1.3.27Apache1 Solaris

SPECweb99, Apache 2.0.48Apache2 Linux

SPECjbb2000, 16 warehousesJBB Solaris

SPECjbb2000, 8 warehousesJBB Linux

TPC-C, 100 warehousesDB2 Solaris

TPC-C, 100 warehousesDB2 Linux

ConfigurationApplication

• Trace-driven simulator using SimFlex
• Memory traces from full-system simulation
• Solaris: 16 CPUs Linux: 8 CPUs

Page ‹#›

18-742 25
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Predictor Results

0%

20%

40%

60%

80%

100%

120%

DB2

Linux

DB2

Solaris

JBB

Linux

JBB

Solaris

Apache

Linux

Apache

Solaris

Scientific

Average

D
o
w
n
g
ra
d
e
s

Mispredictions

Training

Coverage

 47% - 76% coverage on commercial workloads47% - 76% coverage on commercial workloads
 Mispredictions Mispredictions ((≤≤ 22%) can be overlapped 22%) can be overlapped

 Scientific results confirm previous workScientific results confirm previous work

