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Readings

Chapter 9 of Culler & Singh

Reader 5:
• A.-C. Lai and B. Falsafi, Selective, accurate, and

timely self-invalidation using last-touch prediction,
ISCA 2000.

• M. M. K. Martin, M. D. Hill, and D. A. Wood, Token
Coherence: Decoupling Performance and
Correctness, ISCA 2003.

• C. Amza, et al., TreadMarks: Shared Memory
Computing on Networks of Workstations, IEEE
Computer 29(2): 18-28, 1996.
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Announcements

Status report:
• Actual preliminary results
• Not, infrastructure bugs

Course evaluations:
• Feedback given on graded homework
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Types of Coherence Optimization

Memory consistency models:
– Hide store latency (via annotation, speculation, or both)

Other optimization types:
• Hide latency

– Prefetching
– Forwarding

• Coherence optimization
– Reduce traffic
– Overlap transitions

» Request forwarding
» Collecting acknowledgements at writer

– Reduce transitions
» Sharing prediction

– Hide transitions
» Dynamic self-invalidation
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Example Shared Read in DSM
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Example Prefetched Shared Read in DSM
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Prefetching Revisited

Same issues as uniprocessor:
• “what” to prefetch is difficult
• “when” to prefetch is even more difficult

– Distances are larger
– May pollute caches or may prefetch too late (as before)
– But, may also take data away from current user (multiprocessor)

Can Forward too:
• same problems as prefetching
• “who” and “When”

Can be done in SW, HW or both
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Reduce Traffic

Enhanced caching:
• R-NUMA

Reduce false sharing:
• Pad data structures (what is wrong with this?)
• Spatial pattern prediction [Chen et al.]
• Coherence decoupling

– Value prediction assuming old (stale) values are still in the cache
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Overlapping Transitions: Request Forwarding
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Request Forwarding

Also called a “3-hop” rather than a “4-hop” protocol
• Implemented in Stanford DASH

– Got it right in SGI Origin 2000

• Causes deadlock if not implemented correctly
• Why?
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Overlapping Transitions:
Optimizing Acknowledgements
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Optimizing Acks and Invals

Collecting Acks at Writer
• Distributes the load
• Obviates the need for bookkeeping at directory
• E.g., Piranha CMP

Eager response to upgrade:
• Directory can respond and inval in background
• Has memory order implications

– Stores commit but are not completed!

• Implemented in Compaq/HP AlphaServer GS320
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Coherence Optimization:
Example Migratory Sharing

              Proc 1                       Proc2                   Proc 3
              Read X
              Write X

Read X
Write X

     Read X
     Write X
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Migratory Sharing Transitions

Every Read/Write pair results in:
• A remote read miss
• Followed by an upgrade request

Coherence FSM can keep track of this
At the directory:
• Two back-to-back requests for Read/upgrade by

same proc
• Make a transition to “migratory Modified” state
• Upon a read, invalidate current copy
• Return a writable copy (i.e., M state)
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Coherence Optimization: Example
Producer/Consumer Sharing

              Proc 1                       Proc2                                Proc 3
              Read X
              Write X

Read X

     Read X

              Read X
              Write X

Read X

     Read X
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Producer/Consumer Transitions

Simple optimization:
• Upon read miss, “downgrade” rather than invalidate

“writer”
– Distinguish this transition from the migratory case

• Results in one upgrade from writer, followed by
reads by others

More sophisticated optimizations:
• Keep track of prior readers
• Forward to all readers upon the first read
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Shortcomings of Coherence Optimizations

Optimizations built directly into coherence transitions
– e.g., migratory sharing in SGI Origin
– Not a great idea!
– Coherence protocols are extremely complex machines
– Hard to verify even basic protocols
– Each optimization -> extra complexity -> state explosion!

Plus
• Must only target simple sharing patterns
• Can only learn/optimize one sharing pattern at a time

– Data structures may exhibit multiple patterns throughout the
program
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Recent Proposals: Table-Based Predictors

Decouple predictor from protocol
+ learn multiple sharing patterns simultaneously
+ protocol hints  no impact on state machine
– may require large storage overhead
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Predictor

read miss on X
from P1

Migratory!

1.  Go to S

2.  Then go to M
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Memory Sharing Predictor (MSP) [Lai et al.]

2-level table-based predictor at each directory
• Keeps a history of prior messages
• For each history, keeps a sharing outcome
• E.g., an upgrade by P3 led to reads by P1 and P2

prediction

History Table

(upgrade,P3) (upgrade,P3) (read,[P1,P2])
(read,[P1,P2]) (upgrade,P3)

Pattern Table

(read,[P1,P2])
block 0x100
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Upgrade Predictor [Kaxiras et al.]

PC-indexed table-based predictor
• On a load, store address
• If count saturated, upgrade
• On a subsequent store, increment count
• On invalidations, decrement count

Upgrade!

Load address 2-bit counter

Load PC
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Hiding Transitions: Dynamic Self-Invalidation
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Trace-based Downgrade Prediction

Predicts last store to modified cache block

• Records a trace of stores to a block
– From store miss to last store

• When trace recurs, predict last store

store
missPC1: st X

last
store

PC2: st X

PC3: st X

PC1: st X

load by
other node

Trace =
{PC1,PC2,PC3,PC1}

 Timely downgradesTimely downgrades
–– Triggered immediately on last storeTriggered immediately on last store

 Good prediction: 3-hop Good prediction: 3-hop  2-hop 2-hop
 MispredictionMisprediction: store miss: store miss

–– Relaxed memory model hides penaltyRelaxed memory model hides penalty
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f(PC1,PC2…)
(11)sig.

• 2-level predictor, derived from Last Touch Predictor
– [Lai & Falsafi]

History Table

address

Signature Table

Traces of
store PCs

2-bit
saturating
counters

Predictor Structure (Recall Dead-Block Predictor)

Fixed-length encoding

signature downgrade?
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Methodology

barnes, em3d, moldyn, ocean, waterScientific Apps

SPECweb99, Apache 1.3.27Apache1 Solaris

SPECweb99, Apache 2.0.48Apache2 Linux

SPECjbb2000, 16 warehousesJBB Solaris

SPECjbb2000, 8 warehousesJBB Linux

TPC-C, 100 warehousesDB2 Solaris

TPC-C, 100 warehousesDB2 Linux

ConfigurationApplication

• Trace-driven simulator using SimFlex
• Memory traces from full-system simulation
• Solaris: 16 CPUs    Linux: 8 CPUs
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Predictor Results
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 47% - 76% coverage on commercial workloads47% - 76% coverage on commercial workloads
 Mispredictions Mispredictions ((≤≤ 22%) can be overlapped 22%) can be overlapped

 Scientific results confirm previous workScientific results confirm previous work


