
Page 1

18-742
Lecture 10

Symmetric
Multiprocessors II

Spring 2005

Prof. Babak Falsafi

http://www.ece.cmu.edu/~ece742

Slides developed in part by Profs. Adve, Falsafi, Hill, Slides developed in part by Profs. Adve, Falsafi, Hill, LebeckLebeck, Reinhardt, , Reinhardt,
Smith, and Singh of University of Illinois, Carnegie Mellon UnivSmith, and Singh of University of Illinois, Carnegie Mellon University, ersity,
University of Wisconsin, Duke University, University of MichiganUniversity of Wisconsin, Duke University, University of Michigan, and , and
Princeton University.Princeton University.

PrWr/—

BusGrant/BusUpgr

BusRd/Flush

BusGrant/

BusRdX/Flush

BusGrant/BusRdX

PrRd/BusReq

PrWr/—

PrRd/—

PrRd/—
BusRd/Flush′

E

M

I

S

PrRd/—

BusRd (S)

PrWr/BusReq

I → M

S → M

PrWr/
BusReq

BusRdX/Flush′

I → S,E

BusRdX/Flush

BusRdX/Flush′

BusGrant/
BusRd (S) BusRd/Flush

18-742 2
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Announcements

Homework 5 is posted
Due next Wednesday

Talk at Intel this Friday
Can Parallel Computing Finally Impact Mainstream

Computing?
Uzi Vishkin, University of Maryland

(10:30am @ Intel Research Pittsburgh)

Page 2

18-742 3
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Readings

Chapter 6 of the book
Reader 4
• S. L. Scott, Synchronization and Communication in

the T3E Multiprocessor, ISCA 1996.
• BlueGene/L Team, An Overview of the BlueGene/L

SuperComputer, SC 2002: 1-22.

18-742 4
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Shared Caches

• Share low level caches among multiple processors
– Sharing L1 adds to latency, unless multithreaded processor

• Advantages
– Eliminates need for coherence protocol at shared level
– Reduces latency within sharing group
– Processors essentially prefetch for each other
– Can exploit working set sharing
– Increases utilization of cache hardware

• Disadvantages
– Higher bandwidth requirements
– Increased hit latency
– May be more complex design
– Lower effective capacity if working sets don’t overlap

• Bottom Line
– Packaging has a lot to do with it
– As levels of integrations increase, there will be more sharing

Page 3

18-742 5
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Split-transaction (Pipelined) Bus

• Supports multiple simultaneous transactions (many
designs)

Req
Delay

Response

Atomic Transaction Bus

Split-transcation Bus

18-742 6
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Potential Problems

• Two transactions to same block (conflicting)
– Mid-transaction snoop hits

• Buffer requests and responses
– Need flow control to prevent deadlock

• Ordering of Snoop responses
– when does snoop response appear wrt data response

Page 4

18-742 7
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

One Solution

• NACK for flow control
• Out-of-order responses

– snoop results presented with data response

• Disallow conflicting transactions

18-742 8
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

A Split-transaction Bus Design

• 4 Buses + Flow Control and Snoop Results
– Command (type of xaction)
– Address
– Tag (unique identifier for response)
– Data (doesn’t require address)

• Form of transactions
– BusRD, BusRDX (request + response)
– Writeback (request + data)
– Upgrade (request only)

• Per Processor Request Table Tracks All Transactions

Page 5

18-742 9
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

A Simple Example

4,x 4,x 4,x
ld x ld xst x

P2 Can snoop data from first ld
P1 Must hold st operation until entry is clear

P0 P1 P2

18-742 10
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Multi-Level Caches with Split Bus

Response Processor request

Request/response
to bus

L1 $

L2 $

1

27

8

Processor

Bus

L1 $

L2 $

5

63

4

Processor

Response/
request
from bus

Response/
request
from L2 to L1

Response/
request
from L1 to L2

Page 6

18-742 11
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Multi-level Caches with Split-Transaction Bus

• General structure uses queues between
– Bus and L2 cache
– L2 cache and L1 cache

• Deadlock!
• Classify all transactions

– Request, only generates responses
– Response, doesn’t generate any other transactions

• Requestor guarantees space for all responses
• Use Separate Request and Response queues

18-742 12
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

B

A

More on Correctness

• Partial correctness (never wrong):
Maintain coherence and consistency

• Full correctness (always right): Prevent:
• Deadlock:

– all system activity ceases
– Cycle of resource dependences

• Livelock:
– no processor makes forward progress
– constant on-going transactions at hardware level
– e.g. simultaneous writes in invalidation-based protocol

• Starvation:
– some processors make no forward progress
– e.g. interleaved memory system with NACK on bank busy

Page 7

18-742 13
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Deadlock, Livelock, Starvation

• Request-reply protocols can lead to deadlock
– When issuing requests, must service incoming transactions
– e.g. cache awaiting bus grant must snoop & flush blocks
– else may not respond to request that will release bus: deadlock

• Livelock:
– window of vulnerability problem [Kubi et al., MIT]
– Handling invalidations between obtaining ownership & write
– Solution: don’t let exclusive ownership be stolen before write

• Starvation:
– solve by using fair arbitration on bus and FIFO buffers

18-742 14
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Deadlock Avoidance

• Responses are never delayed by requests waiting for
a response

• Responses are guaranteed to be sunk
• Requests will eventually be serviced since the

number of responses is bounded by outstanding
requests

• Must classify transactions according to deadlock and
coherence semantics

– e.g., ordering of BusRD response (Bdata) and BInval
– Treat both Bdata and Binval as requests (go in same queue)

Page 8

18-742 15
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

SGI Challenge Overview

• 36 MIPS R4400 (peak 2.7 GFLOPS, 4 per board) or 18 MIPS
R8000 (peak 5.4 GFLOPS, 2 per board)

• 8-way interleaved memory (up to 16 GB)

• 1.2 GB/s Powerpath-2 bus @ 47.6 MHz, 16 slots, 329 signals

• 128 Bytes lines (1 + 4 cycles)

• Split-transaction with up to 8 outstanding reads
– all transactions take five cycles

• Miss latency nearly 1 us (mostly on CPU board, not bus…)

(a) A four-processor board

V
M

E
-6

4

S
C

S
I-

2

G
ra

ph
ic

s

H
P

P
I

I/O subsystem

Interleaved
memory:

16 GB maximum

Powerpath-2 bus (256 data, 40 address, 47.6 MHz)

R4400 CPUs
and caches

(b) Machine organization

18-742 16
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Processor and Memory Systems

• 4 MIPS R4400 processors per board share A / D chips
• A chip has address bus interface, request table,

control logic
• CC chip per processor has duplicate set of tags
• Processor requests go from CC chip to A chip to bus
• 4 bit-sliced D chips interface CC chip to bus

L2 $

CC-chip

D-chip
slice 1

D-chip
slice 2

D-chip
slice 3

D-chip
slice 4A-chip

Powerpath-2 bus

MIPS
R4400

MIPS
R4400

MIPS
R4400

MIPS
R4400

L2 $L2 $L2 $

CC-chip CC-chipCC -chip

D
up

lic
at

e
ta

gs

D
up

lic
at

e
ta

gs

D
up

lic
at

e
ta

gs

D
up

lic
at

e
ta

gs

Page 9

18-742 17
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

SGI Powerpath-2 Bus

• Non-multiplexed, 256-data/40-address, 47.6 MHz, 8 o/s
requests

• Wide => more interface chips so higher latency, but more
bw at slower clock

• Large block size also calls for wider bus
• Uses Illinois MESI protocol (cache-to-cache sharing)
• More detail in chapter

1. Arbitration

2. Resolution

3. Address

4. Decode5. Acknowledge

No
requestors

At least one
requestor

18-742 18
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Bus Design and Req-Resp Matching

• Essentially two separate buses, arbitrated
independently

– “Request” bus for command and address
– “Response” bus for data

• Out-of-order responses imply need for matching
req-response

– Request gets 3-bit tag when wins arbitration (8 outstanding max)
– Response includes data as well as corresponding request tag
– Tags allow response to not use address bus, leaving it free

• Separate bus lines for arbitration, and for snoop
results

Page 10

18-742 19
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Bus Design (continued)

• Each of request and response phase is 5 bus cycles
– Response: 4 cycles for data (128 bytes, 256-bit bus), 1 turnaround
– Request phase: arbitration, resolution, address, decode, ack
– Request-response transaction takes 3 or more of these

Cache tags looked up in decode; extend ack cycle if not possible
• Determine who will respond, if any

• Actual response comes later, with re-arbitration

Write-backs have request phase only: arbitrate both data+addr buses

Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack Arb Rslv Addr Dcd Ack

Addr
req

Addr Addr

Data
req

Tag

D0 D1 D2 D3

Addr
req

Addr Addr

Data
req

Tag

Grant

D0

check check

ackack

Time

Address
bus

Data
arbitration

Data
bus

Read operation 1

Read operation 2

18-742 20
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Bus Design (continued)

• Flow-control through negative acknowledgement
(NACK)

• No conflicting requests for same block allowed on bus
– 8 outstanding requests total, makes conflict detection tractable

– Eight-entry “request table” in each cache controller

– New request on bus added to all at same index, determined by tag

– Entry holds address, request type, state in that cache (if determined
already), ...

– All entries checked on bus or processor accesses for match, so fully
associative

– Entry freed when response appears, so tag can be reassigned by bus

Page 11

18-742 21
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Bus Interface with Request Table

Addr + cmd
Snoop Data buffer

Write-back buffer

Comparator

Tag

Addr + cmd

To
control

TagTag

Data to/from $

Request
buffer

Request table

Ta
g

7

A
dd

re
ss

Request +

M
is

ce
lla

ne
ou

s

response
queue

Addr + cmd bus

Data + tag bus

Snoop state
from $

state

Issue +
merge

W
rit

e
b

ac
ks

R
es

po
n

se
s

check

0

O
rig

in
at

or

M
y

re
sp

o
ns

e

in
fo

rm
at

io
n

R
es

po
ns

e
qu

eu
e

18-742 22
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Memory Access Latency

• 250ns access time from address on bus to data on
bus

• But overall latency seen by processor is 1000ns!
– 300 ns for request to get from processor to bus

» down through cache hierarchy, CC chip and A chip
– 400ns later, data gets to D chips

» 3 bus cycles to address phase of request transaction, 12 to
access main memory, 5 to deliver data across bus to D
chips

– 300ns more for data to get to processor chip
» up through D chips, CC chip, and 64-bit wide interface to

processor chip, load data into primary cache, restart
pipeline

Page 12

18-742 23
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Challenge I/O Subsystem

• Multiple I/O cards on system bus,
each has 320MB/s HIO bus

– Personality ASICs connect these to devices (standard and graphics)

• Proprietary HIO bus
– 64-bit multiplexed address/data, split read trans., up to 4 per device
– Pipelined, but centralized arbitration, with several transaction lengths
– Address translation via mapping RAM in system bus interface

• I/O board acts like a processor to memory system

HIO bus (320 MB/s)

System address bus

System data bus (1.2 GB/s)

Address DatapathAddress map

HIO
Peripheral

HIO
SCSI

HIO
VME

HIO
HPPI

HIO
graphics

Personality
ASICs

System bus to HIO bus
interface

18-742 24
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Challenge Memory System Performance

• Read microbenchmark w/ various strides / array sizes

Ping-pong flag-spinning microbenchmark: round-trip 6.2 µs.

T
im

e
 (

ns
)

Stride (bytes)

4 16 64 256 1 K 4 K 16 K 64 K 256 K 1 M 4 M
0

500

1,000

1,500

TLB

MEM

L
2

8 M
4 M
2 M

 1 M
512 K
256 K
128 K
64 K
32 K
16 K

Page 13

18-742 25
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

SUN Enterprise 6000 Overview

• Up to 30 UltraSPARC processors, MOESI protocol
• GigaplaneTM bus has peak bw 2.67 GB/s, 300 ns

latency
• Up to 112 outstanding transactions (max 7 per board)
• 16 bus slots, for processing or I/O boards

– 2 CPUs and 1GB memory per board
» memory distributed, but protocol treats as centralized (UMA)

GigaplaneTM bus (256 data, 41 address, 83 MHz)

I/O Cards

P

$2

$
P

$2

$

mem ctrl

Bus Interf ace / Switch
Bus Interf ace

CPU/Mem
Cards

18-742 26
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Sun Gigaplane Bus
• Non-multiplexed, split-transaction, 256-data/41-

address, 83.5 MHz (Plus 32 ECC lines, 7 tag, 18
arbitration, etc. Total 388)

• Cards plug in on both sides: 8 per side
• 112 outstanding transactions, up to 7 from each board

– Designed for multiple outstanding transactions per processor

• Emphasis on reducing latency, unlike Challenge
– Speculative arbitration if address bus not scheduled from prev. cycle

– Else regular 1-cycle arbitration, and 7-bit tag assigned in next cycle

• Snoop result associated with request (5 cycles later)
• Main memory can stake claim to data bus 3 cycles into

this, and start memory access speculatively
– Two cycles later, asserts tag bus to inform others of coming transfer

• MOESI protocol

Page 14

18-742 27
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Gigaplane Bus Timing

Arbitration

Address

State

Tag

Status

Data

1

Rd A Tag

A D A D A D A D A D A D A D A D

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Share ~Own

Tag

OK

D0 D1

4,5

Rd B Tag

Own

Tag

6

Cancel

Tag

7

18-742 28
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Enterprise Processor and Memory System

• 2 procs / board, ext. L2 caches, 2 mem banks w/ x-bar
• Data lines buffered through UDB to drive internal 1.3

GB/s UPA bus
• Wide path to memory so full 64-byte line in 2 bus cycles

UltraSparc

L2 $ Tags

UDB

L2 $ Tags

UDB

Address controller Data controller (crossbar)

Memory (16 × 72-bit SIMMS)

D-tags

576144

Gigaplane connector

Control Address Data 288

Address controller Data controller (crossbar)

Gigaplane connector

Control Address Data 288

72

SysIO SysIO

SBUS
25 MHz 64

SBUS slots

Fast wide
SCSI

10/100
Ethernet

FiberChannel
module (2)

UltraSparc

Page 15

18-742 29
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Enterprise I/O System

• I/O board has same bus interface ASICs as processor
boards

• But internal bus half as wide, and no memory path
• Only cache block sized transactions, like processing

boards
– Uniformity simplifies design
– ASICs implement single-block cache, follows coherence protocol

• Two independent 64-bit, 25 MHz Sbuses
– One for two dedicated FiberChannel modules connected to disk
– One for Ethernet and fast wide SCSI
– Can also support three SBUS interface cards for arbitrary

peripherals

• Performance and cost of I/O scale with no. of I/O
boards

18-742 30
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Memory Access Latency
• 300ns read miss latency (130 ns on bus)
• Rest is path through caches & the DRAM access
• TLB misses add 340 ns

T
im

e
(n

s)

Stride (bytes)

4 16 64 256 1 K 4 K 16 K 64 K 256 K 1 M 4 M
0

100

200

300

400

500

600

700

8 M
4 M
2 M
1 M

512 K
256 K
128 K

64 K
32 K
16 K

Ping-pong microbenchmark is 1.7 µs round-trip (5 mem accesses)

Page 16

18-742 31
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Sun Enterprise 10000

• How far can you go with snooping coherence?
• Quadruple request/snoop bandwidth using four

address busses
– each handles 1/4 of physical address space
– impose logical ordering for consistency: for writes on same cycle,

those on bus 0 occur “before” bus 1, etc.

• Get rid of data bandwidth problem: use a network
– E10000 uses 16x16 crossbar betw. CPU boards & memory boards
– Each CPU board has up to 4 CPUs: max 64 CPUs total

• 10.7 GB/s max BW, 468 ns unloaded miss latency
• See “Starfire: Extending the SMP Envelope”, IEEE

Micro, Jan/Feb 1998

18-742 32
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Outline

• Coherence Control Implementation

• Writebacks, Non-Atomicity, & Serialization/Order

• Hierarchical Cache

• Split Buses

• Deadlock, Livelock, & Starvation

• Three Case Studies

• TLB Coherence

• Virtual Cache Issues

Page 17

18-742 33
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Translation Lookaside Buffer

• Cache of Page Table Entries
• Page Table Maps Virtual Page to Physical Frame

0

4

7 7

4

3

Virtual Address Space Physical Address Space

18-742 34
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

The TLB Coherence Problem

• Since TLB is a cache, must be kept coherent
• Change of PTE on one processor must be seen by all

processors
• Process migration
• Changes are infrequent

– get OS to do it
– Always flush TLB is often adequate

Page 18

18-742 35
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

TLB Shootdown

• To modify TLB entry, modifying processor must
– LOCK page table,
– flush TLB entries,
– queue TLB operations,
– send interprocessor interrupt,
– spin until other processors are done
– UNLOCK page table

• SLOW...
– But most common solution today

• Some ISAs have “flush TLB entry” instructions

18-742 36
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Virtual Caches & Synonyms

• Problem
– Synonyms: V0 & V1 map to P1
– When doing coherence on block in P1 how do you find V0 & V1?

• Don’t do virtual caches (most common today)
• Don’t allow synonyms

– Constrains software (and OS assumptions)

• Allow virtual cache & synonyms
– How implement reverse address translation?
– See Wang et al. next

Page 19

18-742 37
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Wang et al. [ISCA89]

• Basic Idea
– Virtual L1 and physical L2
– Do coherence on physical addresses
– Each L2 block maintains backpointer to corresponding L1 block (if

any)
(requires log2 #L1_blocks - log2 (page_size / block_size)

– Never allow block to be simultaneously cached under synonyms

• Example where V0 & V1 map to P2
– Initially V1 in L1 and P2 in L1 points to V1
– Processor references V0
– L1 miss
– L2 detects synonym in L1
– Change L1 tag and L2 pointer so that L1 has V0 instead of V1
– Resume

18-742 38
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Virtual Caches & Homonyms

• Homonym
– V0 of one process maps to P2, while V0 of other process maps to P3

• Flush cache on context switch
– simple but performs poorly

• Address-space IDs (ASIDs)
– in architecture & part of context state

Page 20

18-742 39
(C) 2005 Babak Falsafi from Adve, Falsafi,
Hill, Lebeck, Reinhardt, Smith & Singh

Outline

• Coherence Control Implementation

• Writebacks, Non-Atomicity, & Serialization/Order

• Hierarchical Cache

• Split Buses

• Deadlock, Livelock, & Starvation

• Three Case Studies

• TLB Coherence

• Virtual Cache Issues

