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The Hydra chip multiprocessor
(CMP) integrates four MIPS-based processors
and their primary caches on a single chip
together with a shared secondary cache. A stan-
dard CMP offers implementation and perfor-
mance advantages compared to wide-issue
superscalar designs. However, it must be pro-
grammed with a more complicated parallel
programming model to obtain maximum per-
formance. To simplify parallel programming,
the Hydra CMP supports thread-level specu-
lation and memory renaming, a paradigm that
allows performance similar to a uniprocessor of
comparable die area on integer programs. This
article motivates the design of a CMP,
describes the architecture of the Hydra design
with a focus on its speculative thread support,
and describes our prototype implementation.

Why build a CMP?
As Moore’s law allows increasing numbers

of smaller and faster transistors to be inte-
grated on a single chip, new processors are
being designed to use these transistors effec-
tively to improve performance. Today, most
microprocessor designers use the increased
transistor budgets to build larger and more
complex uniprocessors. However, several
problems are beginning to make this approach
to microprocessor design difficult to contin-
ue. To address these problems, we have pro-
posed that future processor design
methodology shift from simply making pro-
gressively larger uniprocessors to implement-
ing more than one processor on each chip.1

The following discusses the key reasons why
single-chip microprocessors are a good idea.

Parallelism
Designers primarly use additional transis-

tors on chips to extract more parallelism from
programs to perform more work per clock
cycle. While some transistors are used to build
wider or more specialized data path logic (to
switch from 32 to 64 bits or add special mul-
timedia instructions, for example), most are
used to build superscalar processors. These
processors can extract greater amounts of
instruction-level parallelism, or ILP, by find-
ing nondependent instructions that occur
near each other in the original program code.

Unfortunately, there is only a finite amount
of ILP present in any particular sequence of
instructions that the processor executes
because instructions from the same sequence
are typically highly interdependent. As a
result, processors that use this technique are
seeing diminishing returns as they attempt to
execute more instructions per clock cycle, even
as the logic required to process multiple
instructions per clock cycle increases qua-
dratically. A CMP avoids this limitation by
primarily using a completely different type of
parallelism: thread-level parallelism. We
obtain TLP by running completely separate
sequences of instructions on each of the sep-
arate processors simultaneously. Of course, a
CMP may also exploit small amounts of ILP
within each of its individual processors, since
ILP and TLP are orthogonal to each other.

Wire delay
As CMOS gates become faster and chips

become physically larger, the delay caused by
interconnects between gates is becoming more
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significant. Due to rapid process technology
improvement, within the next few years wires
will only be able to transmit signals over a small
portion of large processor chips during each
clock cycle.2 However, a CMP can be designed
so that each of its small processors takes up a
relatively small area on a large processor chip,
minimizing the length of its wires and simpli-
fying the design of critical paths. Only the more
infrequently used, and therefore less critical,
wires connecting the processors need to be long.

Design time
Processors are already difficult to design.

Larger numbers of transistors, increasingly
complex methods of extracting ILP, and wire
delay considerations will only make this worse.
A CMP can help reduce design time, however,
because it allows a single, proven processor
design to be replicated multiple times over a
die. Each processor core on a CMP can be
much smaller than a competitive uniprocessor,
minimizing the core design time. Also, a core
design can be used over more chip generations
simply by scaling the number of cores present
on a chip. Only the processor interconnection
logic is not entirely replicated on a CMP.

Why aren’t CMPs used now?
Since a CMP addresses all of these potential

problems in a straightforward, scalable man-
ner, why aren’t CMPs already common? One

reason is that integration densities are just
reaching levels where these problems are
becoming significant enough to consider a par-
adigm shift in processor design. The primary
reason, however, is because it is very difficult to
convert today’s important uniprocessor pro-
grams into multiprocessor ones.

Conventional multiprocessor programming
techniques typically require careful data layout
in memory to avoid conflicts between proces-
sors, minimization of data communication
between processors, and explicit synchro-
nization at any point in a program where
processors may actively share data. A CMP is
much less sensitive to poor data layout and
poor communication management, since the
interprocessor communication latencies are
lower and bandwidths are higher. However,
sequential programs must still be explicitly
broken into threads and synchronized prop-
erly. Parallelizing compilers have been only
partially successful at automatically handling
these tasks for programmers.3 As a result,
acceptance of multiprocessors has been slowed
because only a limited number of program-
mers have mastered these techniques.

Base Hydra design
To understand the implementation and

performance advantages of a CMP design, we
are developing the Hydra CMP. Hydra is a
CMP built using four MIPS-based cores as its
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Figure 1. An overview of the Hydra CMP.



individual processors (see Figure 1). Each core
has its own pair of primary instruction and
data caches, while all processors share a sin-
gle, large on-chip secondary cache. The
processors support normal loads and stores
plus the MIPS load locked (LL) and store con-
ditional (SC) instructions for implementing
synchronization primitives.

Connecting the processors and the sec-
ondary cache together are the read and write
buses, along with a small number of address
and control buses. In the chip implementation,
almost all buses are virtual buses. While they
logically act like buses, the physical wires are
divided into multiple segments using repeaters
and pipeline buffers, where necessary, to avoid
slowing down the core clock frequencies.

The read bus acts as a general-purpose system
bus for moving data between the processors,
secondary cache, and external interface to off-
chip memory. It is wide enough to handle an
entire cache line in one clock cycle. This is an
advantage possible with an on-chip bus that all
but the most expensive multichip systems can-
not match due to the large number of pins that
would be required on all chip packages.

The narrower write bus is devoted to writ-
ing all writes made by the four cores directly to
the secondary cache. This allows the perma-
nent machine state to be maintained in the sec-
ondary cache. The bus is pipelined to allow
single-cycle occupancy by each write, prevent-
ing it from becoming a system bottleneck. The
write bus also permits Hydra to use a simple,
invalidation-only coherence protocol to main-
tain coherent primary caches. Writes broadcast
over the bus invalidate copies of the same line
in primary caches of the other processors. No
data is ever permanently lost due to these inval-
idations because the permanent machine state
is always maintained in the secondary cache.

The write bus also enforces memory con-
sistency in Hydra. Since all writes must pass
over the bus to become visible to the other
processors, the order in which they pass is
globally acknowledged to be the order in
which they update shared memory.

We were primarily concerned with mini-
mizing two measurements of the design: the
complexity of high-speed logic and the laten-
cy of interprocessor communication. Since
decreasing one tends to increase the other, a
CMP design must strive to find a reasonable

balance. Any architecture that allows inter-
processor communication between registers
or the primary caches of different processors
will add complex logic and long wires to paths
that are critical to the cycle time of the indi-
vidual processor cores. Of course, this com-
plexity results in excellent interprocessor
communication latencies—usually just one
to three cycles. Past results have shown that
sharing this closely is helpful, but not if it
extends the access time to the registers and/or
primary caches. Consequently, we chose not
to connect our processors this tightly. On the
other hand, these results also indicated that
we would not want to incur the delay of an
off-chip reference, which can often take 100
or more cycles in modern processors during
each interprocessor communication.

Because it is now possible to integrate rea-
sonable-size secondary caches on processor dies
and since these caches are typically not tightly
connected to the core logic, we chose to use
that as the point of communication. In the
Hydra architecture, this results in interproces-
sor communication latencies of 10 to 20 cycles,
which are fast enough to minimize the perfor-
mance impact from communication delays.
After considering the bandwidth required by
four single-issue MIPS processors sharing a sec-
ondary cache, we concluded that a simple bus
architecture would be sufficient to handle the
bandwidth requirements for a four. This is
acceptable for a four- to eight-processor Hydra
implementation. However, designs with more
cores or faster individual processors may need
to use either more buses, crossbar intercon-
nections, or a hierarchy of connections.

Parallel software performance
We have performed extensive simulation to

evaluate the potential performance of the
Hydra design. Using a model with the mem-
ory hierarchy summarized in Table 1 (next
page), we compared the performance of a sin-
gle Hydra processor to the performance of all
four processors working together. We used the
10 benchmarks summarized in Table 2 to gen-
erate the results presented in Figure 2 (p. 75).

The results indicate that for multipro-
grammed workloads and highly parallel bench-
marks such as large matrix-based or multimedia
applications, we can obtain nearly linear
speedup by using multiple Hydra processors
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working together. These speedups typically will
be much greater than those that can be
obtained simply by making a single large ILP
processor occupying the same area as the four
Hydra processors.1 In addition, multipro-
grammed workloads are inherently parallel,
while today’s compilers can automatically par-
allelize most dense matrix Fortran applications.3

However, there is still a large category of less
parallel applications, primarily integer ones that
are not easily parallelized (eqntott, m88ksim,
and apsi). The speedups we obtained with
Hydra on these applications would be difficult

or impossible to achieve on a conventional mul-
tiprocessor, with the long interprocessor com-
munication latencies required by a multichip
design. Even on Hydra, the speed improvement
obtained after weeks of hand-parallelization is
just comparable to that obtainable with a sim-
ilar-size ILP processor with no programmer
effort. More troubling, compress represents a
large group of applications that cannot be par-
allelized at all using conventional techniques.

Thread-level speculation: A helpful extension
Applications such as database and Web servers
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Table 2. A summary of the conventionally parallelized applications we used to make 

performance measurements with Hydra.

Purpose Application Source Description How parallelized

General compress SPEC95 Entropy-encoding file compression Not possible using 
uniprocessor conventional means
applications eqntott SPEC92 Logic minimization On inner bit vector 

comparison loop
m88ksim SPEC95 CPU simulation of Motorola 88000 Simulated CPU is pipelined 

across processors 
apsi SPEC95 Weather and air pollution modeling Automatically by the SUIF 

compiler
Matrix and  MPEG2 Mediabench suite Decompression of an MPEG-2 “Slices” in the input bitstream
multimedia bitstream distributed among processors
applications applu SPEC95 Solver for partial differential equations Automatically by the SUIF 

compiler
swim SPEC95 Grid-based finite difference modeling Automatically by the SUIF 

compiler
tomcatv SPEC95 Mesh generation Automatically by the SUIF 

compiler
Multiprogrammed OLTP TPC-B Database transaction processing Different transactions execute 
workloads in parallel

pmake Unix command Parallel compilation of Compilations of different files 
several source files execute in parallel

Table 1. The Hydra system configuration used for our simulations.

Characteristic L1 cache L2 cache Main memory

Configuration Separate I and D SRAM cache Shared, on-chip SRAM cache Off-chip DRAM
pairs for each CPU

Capacity 16 Kbytes each 2 Mbytes 128 Mbytes
Bus width 32-bit connection to CPU 256-bit read bus + 32-bit write bus 64-bit bus at half CPU speed
Access time 1 CPU cycle 5 CPU cycles At least 50 cycles
Associativity 4 way 4 way N/A
Line size 32 bytes 64 bytes 4-Kbyte pages
Write policy Write through, no allocate on write Write back, allocate on writes Write back (virtual memory)
Inclusion N/A Inclusion enforced by L2 on L1 caches Includes all cached data



perform well on conventional multiprocessors,
and therefore these applications will provide the
initial motivation to adopt CMP architectures,
at least in the server domain. However, general
uniprocessor applications must also work well
on CMP architectures before they can ever
replace uniprocessors in most computers. Hence,
there needs to be a simple, effective way to par-
allelize even these applications. Hardware sup-
port for thread-level speculation is a promising
technology that we chose to add to the basic
Hydra design, because it eliminates the need for
programmers to explicitly divide their original
program into independent threads.

Thread-level speculation takes the sequence
of instructions run during an existing uniproces-
sor program and arbitrarily breaks it into a
sequenced group of threads that may be run in
parallel on a multiprocessor. To ensure that each
program executes the same way that it did orig-
inally, hardware must track all interthread
dependencies. When a “later” thread in the
sequence causes a true dependence violation by
reading data too early, the hardware must ensure
that the misspeculated thread—or at least the
portion of it following the bad read—re-exe-
cutes with the proper data. This is a considerably
different mechanism from the one used to
enforce dependencies on conventional multi-
processors. There, synchronization is inserted
so that threads reading data from a different
thread will stall until the correct value has been
written. This process is complex because it is
necessary to determine all possible true depen-
dencies in a program before synchronization
points may be inserted.

Speculation allows parallelization of a pro-
gram into threads even without prior knowl-
edge of where true dependencies between
threads may occur. All threads simply run in
parallel until a true dependency is detected
while the program is executing. This greatly
simplifies the parallelization of programs
because it eliminates the need for human pro-
grammers or compilers to statically place syn-
chronization points into programs by hand or
at compilation. All places where synchroniza-
tion would have been required are simply
found dynamically when true dependencies
actually occur. As a result of this advantage,
uniprocessor programs may be obliviously par-
allelized in a speculative system. While con-
ventional parallel programmers must

constantly worry about maintaining program
correctness, programmers parallelizing code
for a speculative system can focus solely on
achieving maximum performance. The spec-
ulative hardware will ensure that the parallel
code always performs the same computation
as the original sequential program.

Since parallelization by speculation dynam-
ically finds parallelism among program threads
at runtime, it does not need to be as conserv-
ative as conventional parallel code. In many
programs there are many potential dependen-
cies that may result in a true dependency, but
where dependencies seldom if ever actually
occur during the execution of the program. A
speculative system may attempt to run the
threads in parallel anyway, and only back up
the later thread if a dependency actually occurs.

On the other hand, a system dependent on
synchronization must always synchronize at
any point where a dependency might occur,
based on a static analysis of the program,
whether or not the dependency actually ever
occurs at runtime. Routines that modify data
objects through pointers in C programs are a
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Figure 2. Speedup of conventionally parallelized applications running on
Hydra compared with the original uniprocessor code running on one of
Hydra’s four processors.



frequent source of this prob-
lem within many integer
applications. In these pro-
grams, a compiler (and some-
times even a programmer
performing hand paralleliza-
tion) will typically have to
assume that any later pointer
reads may be dependent on
the latest write of data using a
pointer, even if that is rarely
or never the case. As a result,
a significant amount of
thread-level parallelism can
be hidden by the way the
uniprocessor code is written,
and therefore wasted as a
compiler conservatively par-
allelizes a program.

Note that speculation and
synchronization are not
mutually exclusive. A pro-
gram with speculative threads
can still perform synchro-
nization around uses of
dependent data, but this syn-
chronization is optional. As a
result, a programmer or feed-
back-driven compiler can still
add synchronization into a
speculatively parallelized pro-
gram if that helps the pro-
gram execute faster. In our
experiments, we found a few
cases where synchronization
protecting one or two key
dependencies in a specula-
tively parallelized program
produced speedup by dra-
matically reducing the num-
ber of violations that
occurred. Too much synchro-
nization, however, tended to
make the speculative paral-
lelization too conservative and
was a detriment to perfor-
mance.

To support speculation, we
need special coherency hard-
ware to monitor data shared
by the threads. This hardware
must fulfill five basic require-
ments, illustrated in Figure 3.
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The figure shows some typical data access pat-
terns in two threads, i and i + 1. Figure 3a
shows how data flows through these accesses
when the threads are run sequentially on a nor-
mal uniprocessor. Figures 3b-d show how the
hardware must handle the requirements. 

1. Forward data between parallel threads.
While good thread selection can mini-
mize the data shared among threads, typ-
ically a significant amount of sharing is
required, simply because the threads are
normally generated from a program in
which minimizing data sharing was not
a design goal. As a result, a speculative
system must be able to forward shared
data quickly and efficiently from an ear-
lier thread running on one processor to a
later thread running on another. Figure
3b depicts this.

2. Detect when reads occur too early (RAW
hazards). The speculative hardware must
provide a mechanism for tracking reads
and writes to the shared data memory. If
a data value is read by a later thread and
subsequently written by an earlier thread,
the hardware must notice that the read
retrieved incorrect data since a true
dependence violation has occurred. Vio-
lation detection allows the system to
determine when threads are not actually
parallel, so that the violating thread can
be re-executed with the correct data val-
ues. See Figure 3b.

3. Safely discard speculative state after viola-
tions. As depicted in Figure 3c, specula-
tive memory must have a mechanism
allowing it to be reset after a violation.
All speculative changes to the machine
state must be discarded after a violation,
while no permanent machine state may
be lost in the process.

4. Retire speculative writes in the correct order
(WAW hazards). Once speculative threads
have completed successfully, their state
must be added to the permanent state of
the machine in the correct program
order, considering the original sequenc-
ing of the threads. This may require the
hardware to delay writes from later
threads that actually occur before writes
from earlier threads in the sequence, as
Figure 3d illustrates.

5. Provide memory renaming (WAR hazards).
Figure 3e depicts an earlier thread read-
ing an address after a later processor has
already written it. The speculative hard-
ware must ensure that the older thread
cannot “see” any changes made by later
threads, as these would not have occurred
yet in the original sequential program.
This process is complicated by the fact
that each processor will eventually be
running newly generated threads (i + 2
in the figure) that will need to “see” the
changes.

In some proposed speculative hardware, the
logic enforcing these requirements monitors
both the processor registers and the memory
hierarchy.4 However, in Hydra we chose to
have hardware only enforce speculative coher-
ence on the memory system, while software
handles register-level coherence.

In addition to speculative memory support,
any system supporting speculative threads
must have a way to break up an existing pro-
gram into threads and a mechanism for con-
trolling and sequencing those threads across
multiple processors at runtime. This general-
ly consists of a combination of hardware and
software that finds good places in a program
to create new, speculative threads. The system
then sends these threads off to be processed
by the other processors in the CMP.

While in theory a program may be specu-
latively divided into threads in a completely
arbitrary manner, in practice one is limited.
Initial program counter positions (and, for
Hydra, register states) must be generated
when threads are started. As a result, we inves-
tigated two ways to divide a program into
threads: loops and subroutine calls. With
loops, several iterations of a loop body can be
started speculatively on multiple processors.
As long as there are only a few straightforward
loop-carried dependencies, the execution of
loop bodies on different processors can be
overlapped to achieve speedup. Using sub-
routines, a new thread can start to run the
code following a subroutine call’s return, while
the original thread actually executes the sub-
routine itself (or vice-versa). As long as the
return value from the subroutine is predictable
(typically, when there is no return value) and
any side effects of the subroutine are not used
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immediately, the two threads can run in par-
allel. In general, achieving speedup with this
technique is more challenging because thread
sequencing and load balancing among the
processors is more complicated with subrou-
tines than loops.

Once threads have been created, the specu-
lation runtime system must select the four least
speculative threads available and allocate them
to the four processors in Hydra. Note that the
least speculative, or head, thread is special. This
thread is actually not speculative at all, since
all older threads that could have caused it to
violate have already completed. As a result, it
can handle events that cannot normally be
handled speculatively (such as operating sys-
tem calls and exceptions). Since all threads
eventually become the head thread, simply
stalling a thread until it becomes the head will
allow the thread to process these events dur-
ing speculation.

Implementing speculation in Hydra
Speculation is an effective method for

breaking an existing uniprocessor program
into multiple threads. However, the threads
created automatically by speculation often
require fast interprocessor communication of

large amounts of data. After all, minimizing
communication between arbitrarily created
threads is not a design consideration in most
uniprocessor code. A CMP like Hydra is nec-
essary to provide low-enough interprocessor
communication latencies and high-enough
interprocessor bandwidth to allow the design
of a practical speculative thread mechanism.

Among CMP designs, Hydra is a particu-
larly good target for speculation because it has
write-through primary caches that allow all
processor cores to snoop on all writes per-
formed. This is very helpful in the design of
violation-detection logic. Figure 4 updates
Figure 1, noting the necessary additions. The
additional hardware is enabled or bypassed
selectively by each memory reference, depend-
ing upon whether a speculative thread gener-
ates the reference.

Most of the additional hardware is con-
tained in two major blocks. The first is a set of
additional tag bits added to each primary
cache line to track whether any data in the line
has been speculatively read or written. The
second is a set of write buffers that hold spec-
ulative writes until they can be safely com-
mitted into the secondary cache, which is
guaranteed to hold only nonspeculative data.

78

HYDRA CMP

IEEE MICRO

Write-through bus
(64 bits)

Read/replace bus (256 bits)

Speculation write buffers

On-chip L2 cache

DRAM main memory

Main memory interface

CPU 0 CP2

L1 inst.
cache

I/O devices

I/O bus interface

CPU 0 memory controller

Centralized bus arbitration mechanisms

L1 inst.
cache

CPU 1 memory controller

L1 inst.
cache

CPU 2 memory controller

L1 inst.
cache

CPU 3 memory controller

0 1 2 3 Retire

CPU 1 CP2 CPU 2 CP2 CPU 3 CP2

L1 data cache and
 speculation bits

L1 data cache and
 speculation bits

L1 data cache and
 speculation bits

L1 data cache and
 speculation bits

Figure 4. An overview of Hydra with speculative support.



One buffer is allocated to
each speculative thread cur-
rently running on a Hydra
processor, so the writes from
different threads are always
kept separate. Only when
speculative threads complete
successfully are the contents of
these buffers actually written
into the secondary cache and
made permanent. As shown in
Figure 4, one or more extra
buffers may be included to
allow buffers to be drained
into the secondary cache in
parallel with speculative exe-
cution on all of the CPUs. We
have previously published5

more details about the addi-
tional primary cache bits and
secondary cache buffers.

To control the thread
sequencing in our system, we
also added a small amount of
hardware to each core using
the MIPS coprocessor inter-
face. These simple “specula-
tion coprocessors” consist of several control
registers, a set of duplicate secondary cache
buffer tags, a state machine to track the cur-
rent thread sequencing among the processors,
and interrupt logic that can start software han-
dlers when necessary to control thread
sequencing. These software handlers are
responsible for thread control and sequencing.
Prior publications5,6 provide complete details
of how these handlers work for sequence spec-
ulative threads in the Hydra hardware.

Together with the architecture of Hydra’s
existing write bus, the additional hardware
allows the memory system to handle the five
memory system requirements outlined previ-
ously in the following ways:

1.Forward data between parallel threads.
When a speculative thread writes data
over the write bus, all more-speculative
threads that may need the data have their
current copy of that cache line invalidat-
ed. This is similar to the way the system
works during nonspeculative operation.
If any of the threads subsequently need
the new speculative data forwarded to

them, they will miss in their primary
cache and access the secondary cache. At
this point, as is outlined in Figure 5, the
speculative data contained in the write
buffers of the current or older threads
replaces data returned from the sec-
ondary cache on a byte-by-byte basis just
before the composite line is returned to
the processor and primary cache. Over-
all, this is a relatively simple extension to
the coherence mechanism used in the
baseline Hydra design.

2. Detect when reads occur too early. Prima-
ry cache bits are set to mark any reads
that may cause violations. Subsequently,
if a write to that address from an earlier
thread invalidates the address, a violation
is detected, and the thread is restarted.

3. Safely discard speculative state after viola-
tions. Since all permanent machine state in
Hydra is always maintained within the sec-
ondary cache, anything in the primary
caches may be invalidated at any time
without risking a loss of permanent state.
As a result, any lines in the primary cache
containing speculative data (marked with
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a special modified bit) may simply be inval-
idated all at once to clear any speculative

state from a primary cache. In parallel with
this operation, the secondary cache buffer
for the thread may be emptied to discard
any speculative data written by the thread
without damaging data written by other
threads or the permanent state of the
machine in the secondary cache.

4. Retire speculative writes in the correct order.
Separate secondary cache buffers are
maintained for each thread. As long as
these are drained into the secondary
cache in the original program sequence
of the threads, they will reorder specula-
tive memory references correctly. The
thread-sequencing system in Hydra also
sequences the buffer draining, so the
buffers can meet this requirement.

5. Provide memory renaming. Each processor
can only read data written by itself or ear-
lier threads when reading its own prima-
ry cache or the secondary cache buffers.
Writes from later threads don’t cause
immediate invalidations in the primary
cache, since these writes should not be vis-
ible to earlier threads. This allows each pri-
mary cache to have its own local copy of
a particular line. However, these “ignored”
invalidations are recorded using an addi-
tional pre-invalidate primary cache bit
associated with each line. This is because
they must be processed before a different
speculative or nonspeculative thread exe-
cutes on this processor. If a thread has to
load a cache line from the secondary
cache, the line it recovers only contains
data that it should actually be able to “see,”
from its own and earlier buffers, as Figure
5 indicates. Finally, if future threads have
written to a particular line in the primary
cache, the pre-invalidate bit for that line
is set. When the current thread completes,
these bits allow the processor to quickly
simulate the effect of all stored invalida-
tions caused by all writes from later proces-
sors all at once, before a new thread begins
execution on this processor.

Based on the amount of memory and logic
required, we estimate that the cost of adding
speculation hardware is comparable to adding
an additional pair of primary caches to the sys-
tem. This enlarges the Hydra die only by a
few percent.
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Other CMP and TLS efforts
Several other research groups have investigated the design of chip multiprocessors and

the implementation of thread-level speculation mechanisms. While there are too many to
mention all here, a few of the most important follow:

• Wisconsin Multiscalar.4,7 This CMP design proposed the first reasonable hardware to
implement TLS. Unlike Hydra, Multiscalar implements a ringlike network between all
of the processors to allow direct register-to-register communication. Along with hard-
ware-based thread sequencing, this type of communication allows much smaller threads
to be exploited at the expense of more complex processor cores. The designers proposed
two different speculative memory systems to support the Multiscalar core. The first
was a unified primary cache, or address resolution buffer (ARB). Unfortunately, the ARB
has most of the complexity of Hydra’s secondary cache buffers at the primary cache
level, making it difficult to implement. Later, they proposed the speculative versioning
cache. The SVC uses write-back primary caches to buffer speculative writes in the pri-
mary caches, using a sophisticated coherence scheme.

• Carnegie-Mellon Stampede.8 This CMP-with-TLS proposal is very similar to Hydra,
including the use of software speculation handlers. However, the hardware is simpler
than Hydra’s. The design uses write-back primary caches to buffer writes—similar to
those in the SVC—and sophisticated compiler technology to explicitly mark all mem-
ory references that require forwarding to another speculative thread. Their simplified
SVC must drain its speculative contents as each thread completes, unfortunately result-
ing in heavy bursts of bus activity.

• MIT M-machine.9 This one-chip CMP design has three processors that share a prima-
ry cache and can communicate register-to-register through a crossbar. Each processor
can also switch dynamically among several threads. As a result, the hardware con-
necting processors together is quite complex and slow. However, programs executed
on the M-machine can be parallelized using very fine-grain mechanisms that are impos-
sible on an architecture that shares outside of the processor cores, like Hydra. Perfor-
mance results show that on typical applications extremely fine-grained parallelization
is often not as effective as parallelism at the levels that Hydra can exploit. The over-
head incurred by frequent synchronizations reduces the effectiveness.

Recently, Sun and IBM announced plans to make CMPs. Sun’s plans offer limited TLS support.
• IBM Power4.10 This is the first commercially proposed CMP targeted at servers and

other systems that already make use of conventional multiprocessors. It resembles
Hydra but does not have TLS support (an unnecessary feature for most types of servers)
and has two large processors per chip.

• Sun MAJC.11 This CMP with a shared primary cache is designed to support Java exe-
cution. It also supports a subroutine-based TLS scheme. MAJC has interrupt hardware
similar to that in our speculative coprocessors, but it implements speculative memory
using only software handlers invoked during the execution of each sharable load or
store. This is possible with Java, the target language, because the rare loads and stores
to global objects that can be shared among subroutines are clearly defined in Java
bytecode binaries. However, even with the shared primary cache allowing quick inter-
processor communication of changes to the speculation-control memory structures
and the low percentage of shared memory accesses, it may be difficult for this scheme
to scale to more than two processors due to the overhead of the software handlers.



Speculation performance
We extended our model of the Hydra sys-

tem with speculation support to verify our
thread-level speculation mechanisms. On all
applications except eqntott—which was par-
allelized using subroutine speculation—we
used our source-to-source loop-translating
system to convert loops in the original pro-
grams to their speculative forms. Even with
our simple, early programming environment,
we could parallelize programs just by picking
out which loops and/or subroutines we want-
ed speculatively parallelized. We then let the
tools do the rest of the work for us.

Both because this design environment is C-
based and Fortran programs can often be auto-
matically parallelized using compilers such as
SUIF, we limited our set of applications to a
wide variety of integer and floating-point C
programs. Table 3 lists them. Many of these
programs are difficult or impossible to paral-
lelize using conventional means due to the
presence of frequent true dependencies. How-
ever, all of the more highly parallel applications
listed in Table 3 can be parallelized by hand.
Still, automatically parallelizing compilers are
stymied by the presence of many C pointers
in the original source code that they cannot
statically disambiguate at compile time.

Figure 6 summaries our results. After our
initial speculative runs with unmodified loops

from the original programs, we used feedback
from our first simulations to optimize our
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Table 3. A summary of the speculatively parallelized applications used to make performance measurements

with Hydra. Applications in italics were also hand-parallelized and run on the base Hydra design.

Application Source Description How parallelized

compress SPEC95 Entropy-encoding compression of a file Speculation on loop for processing each input 
character

eqntott SPEC92 Logic minimization Subroutine speculation on core quick sort routine
grep Unix command Finds matches to a regular expression in a file Speculation on loop for processing each input line
m88ksim SPEC95 CPU simulation of Motorola 88000 Speculation on loop for processing each 

instruction
wc Unix command Counts the number of characters, words, Speculation on loop for processing each input 

and lines in a file character
ijpeg SPEC95 Compression of an RGB image to a JPEG file Speculation on several different loops used to 

process the image
MPEG2 Mediabench suite Decompression of an MPEG-2 bitstream Speculation on loop for processing slices
alvin SPEC92 Neural network training Speculation on 4 key loops
cholesky Numeric recipes Cholesky decomposition and substitution Speculation on main decomposition and 

substitution loops
ear SPEC92 Inner ear modeling Speculation on outer loop of model
simplex Numeric recipes Linear algebra kernels Speculation on several small loops
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Figure 6. Speedup of speculatively parallelized applications running on Hydra
compared with the original uniprocessor code running on one of Hydra’s four
processors. The gray areas show the improved performance following tuning
with feedback-based code.



benchmarks by hand. This avoided the most
critical violations that caused large amounts
of work to be discarded during restarts. These
optimizations were usually minor—usually
just moving a line of code or two or adding
one synchronization point. 6 However, they
had a dramatic impact on benchmarks such
as MPEG2. 

Overall, these results are at least compara-
ble to and sometimes better than a single large
uniprocessor of similar area running these
applications, based on our past work simulat-
ing CMPs and uniprocessors.1

Of course, a CMP can also perform faster
by running fully parallelized programs with-
out speculation, when those programs are
available. A uniprocessor cannot. It is even
possible to mix and match using multipro-
gramming. For example, two processors could
be working together on a speculative applica-
tion, while others work on a pair of com-
pletely different jobs. While we have not fully
implemented it in our prototype, we could
relatively easily enhance the speculative sup-
port routines so that multiple speculative tasks
could run simultaneously. Two processors
would run one speculative program, and two
would run a completely different speculative
program. In this manner, it is possible for a
CMP to nearly always outperform a large
uniprocessor of comparable area.

Speedups are only a part of the story, how-
ever. Speculation also makes parallelization
much easier, because a parallelized program
that is guaranteed to work exactly like the
uniprocessor version can be generated auto-
matically. As a result, programmers only need
to worry about choosing which program sec-
tions should be speculatively parallelized and
tweaked for performance optimization. Even
when optimization is required, we found that
speculative parallelization typically took a sin-
gle programmer a day or two per application.
In contrast, hand parallelization of these C
benchmarks typically took one programmer
anywhere from a week to a month, since it was
necessary to worry about correctness and per-
formance throughout the process. As a result,
even though adding speculative hardware to
Hydra will make the chip somewhat harder
to design and verify, the reduced cost of gen-
erating parallel code will offer significant
advantages.

Prototype implementation
To validate our simulations, develop more

speculative software, and verify that the Hydra
architecture is as simple to design as we believe
it to be, we are working with IDT to manu-
facture a prototype Hydra. It will use IDT’s
embedded MIPS-based RC32364 core and
SRAM macrocells. We have a Verilog model
of the chip and are moving it into a physical
design using synthesis. With 8-Kbyte prima-
ry instruction and data caches and approxi-
mately 128 Kbytes of on-chip secondary
cache, the die (depicted in Figure 7) will be
about 90 mm2 in IDT’s 0.25-micron process.
We based these area and layout estimates on
the current RC32364 layout and area esti-
mates of new components obtained using our
Verilog models of the different sections of the
Hydra memory system.

The memory system we are designing to
connect the IDT components together con-
sists of the following: 

• our speculative coprocessor,
• interconnection buses,
• controllers for all memory resources,
• speculative buffers and bits,
• a simple off-chip main memory con-

troller, and
• an I/O and debugging interface that we

can drive using a host workstation.

We are designing most of this using a fair-
ly straightforward standard cell methodology.
The clock rate target for the cores is about 250
MHz, and we plan on inserting pipeline stages
into our memory system logic as necessary to
avoid slowing the cores. The most critical part
of the circuit design will be in the central arbi-
tration mechanism for the memory con-
trollers. This circuit is difficult to pipeline,
must accept many requests for arbitration
every cycle, and must respond to each request
with a grant signal. The large numbers of high
fan-in and fan-out gates that must operate
during every cycle make it a challenging cir-
cuit design problem.

Achip multiprocessor such as Hydra will
be a high-performance, economical alter-

native to large single-chip uniprocessors. A
CMP of comparable die area can achieve per-
formance similar to a uniprocessor on integer

82

HYDRA CMP

IEEE MICRO



programs using thread-level speculation
mechanisms. In addition, with multipro-
grammed workloads or highly parallel appli-
cations a CMP can significantly outperform a
uniprocessor of comparable cost by operating
as a multiprocessor. Furthermore, the hard-
ware required to support thread-level specu-
lation is not particularly area-intensive.
Inclusion of this feature is not expensive, even
though it can significantly increase the num-
ber of programs that can be easily parallelized
to fully use the CMP. MICRO
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