
IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 6, JUNE 1990 775

Performance Analysis of k-ary n-cube
Interconnection Networks

WILLIAM J. DALLY, MEMBER, IEEE

Abstmct- VLSI communication networks are wire-limited.
The cost of a network is not a function of the number of
switches required, but rather a function of the wiring density
required to construct the network. This paper analyzes commu-
nication networks of varying dimension under the assumption of
constant wire bisection. Expressions for the latency, average case
throughput, and hot-spot throughput of k-ary n-cube networks
with constant bisection are derived that agree closely with experi-
mental measurements. It is shown that low-dimensional networks
(e.g., tori) have lower latency and higher hot-spot throughput
than high-dimensional networks (e.g., binary n-cubes) with the
same bisection width.

Index Terms- Communication networks, concurrent comput-
ing, interconnection networks, message-passing multiprocessors,
parallel processing, VLSI.

I. INTRODUCTION

HE critical component of a concurrent computer is its T communication network. Many algorithms are communi-
cation rather than processing limited. Fine-grain concurrent
programs execute as few as ten instructions in response to a
message [7]. To efficiently execute such programs the com-
munication network must have a latency no greater than about
ten instruction times, and a throughput sufficient to permit a
large fraction of the nodes to transmit simultaneously. Low-
latency communication is also critical to support code sharing
and garbage collection across nodes.

As the grain size of concurrent computers continues to de-
crease, communication latency becomes a more important fac-
tor. The diameter of the machine grows, messages are sent
more frequently, and fewer instructions are executed in re-
sponse to each message. Low latency is more difficult to
achieve in a fine-grain machine because the available wiring
space grows more slowly than the expected traffic. Since the
machine must be constructed in three dimensions, the bisec-
tion area grows only as N2/3 while traffic grows at least as
fast as N, the number of nodes.

Manuscript received September 3, 1987; revised March 28, 1988. This
work was supported in part by the Defense Advanced Research Projects
Agency under Contracts N000014-80-C-0622 and N00014-85-K-0124 and in
part by a National Science Foundation Presidential Young Investigator Award
with matching funds from General Electric Corporation. A preliminary ver-
sion of this paper appeared in the Proceedings of the 1987 Stanford Confer-
ence on Advanced Research in VLSI [lo].

The author is with the .4rtificial Intelligence Laboratory and the Laboratory
for Computer Science, Massachusetts Institute of Technology, Cambridge,
MA 02139.

IEEE Log Number 9034541.

VLSI systems are wire-limited. The cost of these systems
is predominantly that of connecting devices, and the perfor-
mance is limited by the delay of these interconnections. Thus,
to achieve the required performance, the network must make
efficient use of the available wire. The topology of the network
must map into the three physical dimensions so that messages
are not required to double back on themselves, and in a way
that allows messages to use all of the available bandwidth
along their path.

This paper considers the problem of constructing wire-
efficient communication networks, networks that give the op-
timum performance for a given wire density. We compare
networks holding wire bisection, the number of wires cross-
ing a cut that evenly divides the machine, constant. Thus, we
compare low-dimensional networks with wide communication
channels against high-dimensional networks with narrow chan-
nels. We investigate the class of k-ary n-cube interconnection
networks and show that low-dimensional networks outperform
high-dimensional networks with the same bisection width.

The remainder of this paper describes the design of wire-
efficient communication networks. Section I1 describes the as-
sumptions on which this paper is based. The family of k-ary n-
cube networks is described in Section 11-A. We restrict our at-
tention to k-ary n-cubes because it is the dimension of the net-
work that is important, not the details of its topology. Section
11-B introduces wormhole routing [20], a low-latency rout-
ing technique. Network cost is determined primarily by wire
density which we will measure in terms of bisection width.
Section 11-C introduces the idea of bisection width, and dis-
cusses delay models for network channels. A performance
model of these networks is derived in Section 111. Expres-
sions are given for network latency as a function of traffic that
agree closely with experimental results. Under the assump-
tion of constant wire density, it is shown that low-dimensional
networks achieve lower latency and better hot-spot throughput
than do high-dimensional networks.

11. PRELIMINARIES

A . k-ary n-cubes

Many different network topologies have been proposed for
use in concurrent computers: trees [6], [15], [21], Benes net-
works [4], Batcher sorting networks [2], shuffle exchange net-
works [23], Omega networks [14], indirect binary n-cube or
flip networks [3], [22], and direct binary n-cubes [19], [17],
[24]. The binary n-cube is a special case of the family of k-

0018-9340/90/0600-0775$0 1 .OO O 1990 IEEE

776 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 6, JUNE 1990

Fig. 1. A binary 6-cube embedded in the plane

Fig. 2. A ternary 4-cube embedded in the plane.

ary n-cubes, cubes with n dimensions and k nodes in each
dimension.

Most concurrent computers have been built using networks
that are either k-ary n-cubes or are isomorphic to k-ary n-
cubes: rings, meshes, tori, direct and indirect binary n-cubes,
and Omega networks. Thus, in this paper we restrict our atten-
tion to k-ary n-cube networks. We refer to n as the dimension
of the cube and k as the radix. Dimension, radix, and number
of nodes are related by the equation

N = k", (k = m, n =log, N) . (1)

It is the dimension of the network that is important, not the
details of its topology.

A node in the k-ary n-cube can be identified by n-digit
radix k address, ao, . . ' , a n - 1 . The ith digit of the address, a;,
represents the node's position in the ith dimension. Each node
can forward messages to its upper neighbor in each dimension,
i, with address ao, . . . ,a; + l(mod k), . . . , an- l .

In this paper, we assume that our k-ary n-cubes are uni-
directional for simplicity. We will see that our results do not
change appreciably for bidirectional networks. For an actual
machine, however, there are many compelling reasons to make
our networks bidirectional. Most importantly, bidirectional
networks allow us to exploit locality of communication. If
an object A sends a message to an object B, there is a high
probability of B sending a message back to A . In a bidirec-
tional network, a roundtrip from A to B can be made short by
placing A and B close together. In a unidirectional network, a
roundtrip will always involve completely circling the machine
in at least one dimension.

Figs. 1-3 show three k-ary n-cube networks in order of de-
creasing dimension. Fig. l shows a binary 6-cube (64 nodes).
A 3-ary 4-cube (81 nodes) is shown in Fig. 2. An 8-ary 2-
cube (64 nodes), or torus, is shown in Fig. 3. Each line in
Fig. 1 represents two communication channels, one in each
direction, while each line in Figs. 2 and 3 represents a single
communication channel.

Fig. 3 . An 8-ary 2-cube (torus).

B . Wormhole Routing

In this paper, we consider networks that use wormhole [20]
rather than store-and-forward [25] routing. Instead of storing
a packet completely in a node and then transmitting it to the
next node, wormhole routing operates by advancing the head
of a packet directly from incoming to outgoing channels. Only
a few flow control digits (flits) are buffered at each node. A
flit is the smallest unit of information that a queue or channel
can accept or refuse.

As soon as a node examines the header flit(s) of a message,
it selects the next channel on the route and begins forwarding
fits down that channel. As flits are forwarded, the message
becomes spread out across the channels between the source
and destination. It is possible for the first flit of a message
to arrive at the destination node before the last flit of the
message has left the source. Because most flits contain no
routing information, the flits in a message must remain in
contiguous channels of the network and cannot be interleaved
with the flits of other messages. When the header flit of a
message is blocked, all of the flits of a message stop advancing
and block the progress of any other message requiring the
channels they occupy.

A method similar to wormhole routing, called virtual cut-
through, is described in [131. Virtual cut-through differs from
wormhole routing in that it buffers messages when they block,
removing them from the network. With wormhole routing,
blocked messages remain in the network.

Fig. 4 illustrates the advantage of wormhole routing. There
are two components of latency, distance and message aspect
ratio. The distance D is the number of hops required to get
from the source to the destination. The message aspect ratio
(message length L normalized to the channel width W) is the
number of channel cycles required to transmit the message
across one channel. The top half of the figure shows store-
and-forward routing. The message is entirely transmitted from
node No to node N I , then from N I to N2 and so on. With
store-and-forward routing, latency is the product of D and
LIW.

TSF = T , (D x 2) .
The bottom half of Fig, 4 shows wormhole routing. As soon
as a flit arrives at a node, it is forwarded to the next node.
With wormhole routing, latency is reduced to the sum of D
and LIW.

(3)

DALLY: k-ARY n-CUBE INTERCONNECTION NETWORKS 777

I
Thn (TI)

Fig. 4. Latency of store-and-forward routing (top) versus wormhole routing
(bottom).

In both of these equations, T , is the channel cycle time, the
amount of time required to perform a transaction on a channel.

C. VLSI Complexity
VLSI computing systems [161 are wire-limited; the com-

plexity of what can be constructed is limited by wire density,
the speed at which a machine can run is limited by wire delay,
and the majority of power consumed by a machine is used to
drive wires. Thus, machines must be organized both logically
and physically to keep wires short by exploiting locality wher-
ever possible. The VLSI architect must organize a computing
system so that its form (physical organization) fits its function
(logical organization),

Networks have traditionally been analyzed under the as-
sumption of constant channel bandwidth. Under this assump-
tion each channel is one bit wide (W = I) and has unit delay
(T, = 1). The constant bandwidth assumption favors networks
with high dimensionality (e.g., binary n-cubes) over low-
dimensional networks (e.g., tori). This assumption, however,
is not consistent with the properties of VLSI technology. Net-
works with many dimensions require more and longer wires
than do low-dimensional networks. Thus, high-dimensional
networks cost more and run more slowly than low-dimensional
networks. A realistic comparison of network topology must
take both wire density and wire length into account.

To account for wire density, we will use bisection width
1261 as a measure of network cost. The bisection width of a
network is the minimum number of wires cut when the net-
work is divided into two equal halves. Rather than comparing
networks with constant channel width W , we will com-
pare networks with constant bisection width. Thus, we will
compare low-dimensional networks with large W with high-
dimensional networks with small W.

The delay of a wire depends on its length 1. For short wires,
the delay t , is limited by charging the capacitance of the wire
and varies logarithmically with wire length.

(4) t , = qnVe log, Kl

n n

1 I

Fig. 5. A folded torus system.

where qnv is the inverter delay, and K is a constant depending
on capacitance ratios. For long wires, delay t/ is limited by
the speed of light.

lJEF ti = -.
C

In this paper, we will consider three delay models: constant
delay T , independent of length, logarithmic delay T , cx log I ,
and linear delay T , cx I . Our main result, that latency is mini-
mized by low-dimensional networks, is supported by all three
models.

111. PERFORMANCE ANALYSIS

In this section, we compare the performance of unidirec-
tional k-ary n-cube interconnection networks using the fol-
lowing assumptions.

Networks must be embedded into the plane. If a three-
dimensional packaging technology becomes available, the
comparison changes only slightly.

Nodes are placed systematically by embedding n/2 log-
ical dimensions in each of the two physical dimensions. We
assume that both n and k are even integers. The long end-
around connections shown in Fig. 3 can be avoided by folding
the network as shown in Fig. 5.

778 IEEE TRANSACTIONS ON COMPUTERS. VOL. 39, NO. 6, JUNE 1990

For networks with the same number of nodes, wire den-
sity is held constant. Each network is constructed with the
same bisection width B, the total number of wires crossing
the midpoint of the network. To keep the bisection width con-
stant, we vary the width W of the communication channels.
We normalize to the bisection width of a bit-serial (W = 1)
binary n-cube.

The networks use wormhole routing.
Channel delay T , is a function of wire length 1. We be-

gin by considering channel delay to be constant. Later, the
comparison is performed for both logarithmic and linear wire
delays; T , cx log I and T , M I .

When k is even, the channels crossing the midpoint of the
network are all in the highest dimension. For each of the fl
rows of the network, there are k((n/2)-1) of these channels in
each direction for a total of 2 f i k ((n / 2) - ') channels. Thus, the
bisection width B of a k-ary n-cube with W-bit wide commu-
nication channels is

1400

1200

loo0

800

6w

400

200

0

0 200 400 600 800 I000 1200

Position

Wire density versus position for one row of a binary 20-cube Fig. 6.

350 I I

0 258Nodea
A 16K Nodes
0 1MNodcs

P 2 * -
e

For a binary n-cube, k = 2 , the bisection width is B(2, n) =
W N . We set B equal to N to normalize to a binary n-cube
with unit width channels, W = 1 . The channel width W (k , n)
of a k-ary n-cube with the same bisection width B follows
from (6): 0

' 150

! 100
p

50

2W(k, n)N
k

= N ,

k
2 W (k , n) = -. (7)

The peak wire density is greater than the bisection width in
networks with n > 2 because the lower dimensions contribute
to wire density. The maximum density, however, is bounded
by

D,,, = 2WJN k' = k d R k'
i =O i =O

A plot of wire density as a function of position for one row of
a binary 20-cube is shown in Fig. 6 . The density is very low
at the edges of the cube and quite dense near the center. The
peak density for the row is 1364 at position 341. Compare this
density to the bisection width of the row, which is 1024. In
contrast, a two-dimensional torus has a wire density of 1024
independent of position. One advantage of high-radix networks
is that they have a very uniform wire density. They make full
use of available area.

Each processing node connects to 2n channels (n input and
n output) each of which is k / 2 bits wide. Thus, the number

0 5 10 15 20
Dimension. n

Fig. 7. Pin density versus dimension for 256, 16K, and 1M nodes.

of pins per processing node is

N , = n k . (9)

A plot of pin density as a function of dimension for N z 256,
16K, and 1M nodes' is shown in Fig. 7. Low-dimensional
networks have the disadvantage of requiring many pins per
processing node. A two-dimensional network with 1M nodes
(not shown) requires 2048 pins and is clearly unrealizable.
However, the number of pins decreases very rapidly as the
dimension n increases. Even for 1M nodes, a dimension 4
node has only 128 pins. All of the configurations that give
low latency also give a reasonable pin count.

A . Latency

the latency due to the processing node,
Latency T I is the sum of the latency due to the network and

In this paper, we are concerned only with Tnet . Techniques to
reduce Triode are described in [7] and [l 11.

If we select two processing nodes, Pi, P; , at random, the
average number of channels that must be traversed to send a
message from Pi to P; is given by

D : (y) n .

' 1K=1024 and, lM=lKxlK=1048576.

DALLY: k-ARY n-CUBE INTERCONNECTION NETWORKS 779

160

140

are approximately equal, D zz L/W. The following assertion
makes this statement more precise.

Assertion: Minimum latency T,,, occurs at a dimension
n 5 n, , where n, is the dimension for which D = L / W . 120

a
t 100
e

Proof: Differentiating (12) with respect to n gives

(13)
258 Nodes dT,,, - k - 1 - k log k 2L log2 k

--
: s o

dn 2 + k log N . A 16KNodea

0 1M Noden
60

40

20

For n = n,, substituting 13 = L / W into (7) and (11) gives

(14)
k(k - 1) log N

0 5 10 15 20 4L = nk(k - 1) =
log k Dimension. n

delay.
Fig. 8. Latency versus dimension for 256, 16K, and 1M nodes, constant Substituting into the derivative (13) gives

The average latency of a k-ary n-cube is calculated by substi-
tuting (7) and (1 1) into (3)

Fig. 8 shows the average network latency Tnet as a function
of dimension n for k-ary n-cubes with 2' (256), 214 (16K),
and 230 (1M) nodes.2 The left most data point in this fig-
ure corresponds to a torus (n = 2) and the rightmost data
point corresponds to a binary n-cube (k = 2). This figure
assumes constant wire delay T , and a message length L of
150 bits. This choice of message length was based on the
analysis of a number of fine-grain concurrent programs [7].
Although constant wire delay is unrealistic, this figure illus-
trates that even ignoring the dependence of wire delay on wire
length, low-dimensional networks achieve lower latency than
high-dimensional networks.

The latency of the tori on the left side of Fig. 8 is limited
almost entirely by distance. The latency of the binary n-cubes
on the right side of the graph is limited almost entirely by
aspect ratio. With bit serial channels, these cubes take 150
cycles to transmit their messages across a single channel.

In an application that exploits locality of communication,
the distance between communicating objects is reduced. In
such a situation, the latency of the low-dimensional networks,
dominated by distance (the left side of Fig. 8) is reduced.
High-dimensional networks, on the other hand, cannot take
advantage of locality. Their latency, because it is dominated
by message length, will remain high.

In applications that send short messages, the component of
latency due to message length is reduced resulting in lower
latency for high-dimensional networks (the right side of Fig.
8).

k - 1 - k log k (k - 1) log k
2 + 2

k - 1 -log k
2

- -

For all k 2 2, (dT,,, /an) In=,,, 2 0. The derivative is mono-
tonically increasing for n < n,. Thus, the minimum latency

0
Empirically, for all networks with N < 220 and integral val-

ued k and n the minimum latency occurs when k and n are
chosen so that ID - (L/W)I is minimized.

The longest wire in the system becomes a bottleneck that
determines the rate at which each channel operates, T,. The
length of this wire is given by

(aTnet/an = 0) occurs for n < n,.

(16)

If the wires are sufficiently short, delay depends logarithmi-
cally on wire length. If the channels are longer, they become
limited by the speed of light, and delay depends linearly on
channel length. Substituting (16) into (4) and (5) gives

1 = k(fl/2)-1.

log, k logarithmic delay
T , 0:

linear delay.

(17)

We substitute (17) into (12) to get the network latency for
these two cases:

(1 + (4 - 1) log, k) ((y) n + F)
logarithmic delay

TI
(k (n / 2) - - 1) ((y) n + g)

For the three cases shown in Fig. 8, minimum latencies are
achieved for n = 2, 4, and 5, respectively. In general, the
lowest latency is achieved when the component of latency due
to distance D and the component due to message length L / w

\ linear delay.

Fig. shows the average network latency as a function Of

dimension for k-ary n-cubes with 2' (256), 214 (16K), and 220
(1M) nodes, assuming logarithmic wire delay and a message
length, L, of 150. Fig. 10 shows the same data assuming
linear wire delays. both figures, the leftmost data point
corresponds to a torus (n = 2, and the rightmost data Point
corresponds to a binary n-cube (k = 2).

For the sake of comparison, we allow radix to take on noninteger values.
For some of the dimensions considered, there is no integer radix k that gives
the correct number of nodes. In fact, this limitation can be overcome by
constructing a mixedradix cube [5] .

780 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 6, JUNE 1990

lzo0

'Oo0
0 256Nodea 7 A 16K Noda

LEO0 - 0 1MNoda
a
t
e 6 0 0 -
n

y 4 0 0 -
C

d
0 5 10 15 20

Dimension. n

delay.
Fig. 9. Latency versus dimension for 256, 16K, and 1M nodes, logarithmic

1OOOOO
5oo00

loo00
L 5000
a
t
e 1000 0 256 Nodes

Y A 16K Nodes

-
-

-

; 500
-

100 -

! 0 1MNodeo

10 '
0 5 10 15 20

Dimension, n

Fig. 10. Latency versus dimension for 256, 16K, and 1M nodes, linear
delay.

In the linear delay case, Fig. 10, a torus (n = 2) always
gives the lowest latency. This is because a torus offers the
highest bandwidth channels and the most direct physical route
between two processing nodes. Under the linear delay assump-
tion, latency is determined solely by bandwidth and by the
physical distance traversed. There is no advantage in having
long channels.

Under the logarithmic delay assumption, Fig. 9, a torus
has the lowest latency for small networks (N = 256). For the
larger networks, the lowest latency is achieved with slightly
higher dimensions. With N = 16K, the lowest latency oc-
curs when n is three.3 With N = lM, the lowest latency is
achieved when n is 5. It is interesting that assuming constant
wire delay does not change this result much. Recall that under
the (unrealistic) constant wire delay assumption, Fig. 8, the
minimum latencies are achieved with dimensions of 2, 4, and
5 , respectively.

The results shown in Figs. 8-10 were derived by compar-
ing networks under the assumption of constant wire cost to
a binary n-cube with W = 1. For small networks it is pos-
sible to construct binary n-cubes with wider channels, and
for large networks (e.g., 1M nodes) it may not be possible
to construct a binary n-cube at all. The available wiring area
grows as N2I3 while the bisection width of a binary n-cube
grows as N. In the case of small networks, the comparison

In an actual machine, the dimension n would be restricted to be an even
integer.

against binary n-cubes with wide channels can be performed
by expressing message length in terms of the binary n-cube's
channel width, in effect decreasing the message length for
purposes of comparison. The net result is the same: lower
dimensional networks give lower latency. Even if we perform
the 256 node comparison against a binary n cube with W-16,
the torus gives the lowest latency under the logarithmic delay
model, and a dimension 3 network gives minimum latency
under the constant delay model. For large networks, the avail-
able wire is less than assumed, so the effective message length
should be increased, making low-dimensional networks look
even more favorable.

In this comparison, we have assumed that only a single bit of
information is in transit on each wire of the network at a given
time. Under this assumption, the delay between nodes T, is
equal to the period of each node T,. In a network with long
wires, however, it is possible to have several bits in transit at
once. In this case, the channel delay T , is a function of wire
length, while the channel period T , < T , remains constant.
Similarly, in a network with very short wires we may allow a
bit to ripple through several channels before sending the next
bit. In this case, T , > T,. Separating the coefficients T , and
T , , (3) becomes

T,,, = (T,D +T, ">
W

The net effect of allowing T , # T , is the same as changing

the length L by a factor of 5 and does not change our results
significantly.

When wire cost is considered, low-dimensional networks
(e.g., tori) offer lower latency than high-dimensional networks
(e.g., binary n-cubes). Tori outperform binary n-cubes be-
cause they better match form to function. The logical and
physical graphs of the torus are identical; thus, messages al-
ways travel the minimum distance from source to destination.
In a binary n-cube, on the other hand, the fit between form
and function is not as good. A message in a binary n-cube em-
bedded into the plane may have to traverse considerably more
than the minimum distance between its source and destination.

T ,

B . Throughput
Throughput, another important metric of network perfor-

mance, is defined as the total number of messages the network
can handle per unit time. One method of estimating through-
put is to calculate the capacity of a network, the total number
of messages that can be in the network at once. Typically the
maximum throughput of a network is some fraction of its ca-
pacity. The network capacity per node is the total bandwidth
out of each node divided by the average number of channels
traversed by each message. For k-ary n-cubes, the bandwidth
out of each node is n W , and the average number of channels
traversed is given by (1 l), so the network capacity per node
r is given by

DALLY: k-ARY n-CUBE INTERCONNECTION NETWORKS 78 1

Dimension n-1

Dimension n-2

r"ii Dimension 0 + To
Fig. 1 1 . Contention model for a network.

AE, Ti
Fig. 12. Contention model for a single dimension.

The network capacity is independent of dimension. For a con-
stant wire density, there is a constant network capacity.

Throughput will be less than capacity because contention
causes some channels to block. This contention also increases
network latency. To simplify the analysis of this contention,
we make the following assumptions.

Messages are routed using e-cube routing (in order
of decreasing dimension) [8]. That is, a message at node
a o , . . . ,anpl destined for nodes bo,. . . , b n - l is fust routed
in dimension n - 1 until it reaches node ao, . . . , a n - 2 , b n - 1 .

The message is then routed in dimension n - 2 until it reaches
node a o , . ' . , a n - 3 , b n - 2 , b n - l , and so on. As shown in Fig.
11, this assumption allows us to consider the contention in
each dimension separately.

The traffic from each node is generated by a Poisson
process with arrival rate X (bitdcycle).

Message destinations are uniformly distributed and inde-
pendent.

The arrival rate of X(bits/cycle) corresponds to XE =
(X/L)(messages/cycles). At the destination, each flit is ser-
viced as soon as it arrives, so the service time at the sink is
To = L/W = 2L/k. Starting with To we will calculate the
service time seen entering each preceding dimension.

For convenience, we will define the following quantities as
illustrated in Fig. 12:

probability that a message skips (does
not route in) a dimension,

1
Y = z

AS = yXE rate of traffic that skips the previous
messages dimension, i f l , (~ cycle ' 9

XR = (1 - ~) X E rate of traffic that routes in the previ-
ous dimension, i + 1, (cycle), messages

ASS = Y 2 X E rate of traffic that skips both the previ-
ous dimension, i + 1 , and the current

messages dimension i, (- cycle ' 7

XSR = y(1 - y) h ~ rate of traffic that skips the previous
dimension, i + 1 , and routes in the

messages
cycle current dimension, i (- >,

XRS = y(1 - ~) X E rate of traffic that routes in the pre-
vious dimension, i + 1 , and skips the

messages current dimension i, (- cycle ' 9

XRR = (1 - y) 2 A ~ rate of traffic that routes in both the
previous dimension i + 1, and the cur-
rent dimension i, (- messages

cycle 1.

Consider a single dimension i of the network as shown in
Fig. 12. All messages incur a latency due to contention on
entering the dimension. Those messages that are routed incur
an additional latency TR; due to contention during routing. The
rate XE message stream entering the dimension is composed
of two components: a rate As stream that skipped the previous
(i +lst) dimension, and a rate XR stream that was routed in the
previous dimension. These two streams are in turn split into
components that will skip the ith dimension (ASS and XRS) and
components that will be routed in the ith dimension (XSR and
ARR). The entering latency seen by one component (say Ass)
is given by multiplying the probability of a collision (in this
case X R ~ T ~) by the expected latency due to a collision [in this
case (Ti/2)]. The components that require routing must also
add the latency due to contention during routing, T R ~ . Adding
up the four components with appropriate weights gives the
following equation for Ti+l.

The fust term of (22) is the latency seen entering the next
dimension. The second term accounts for the routing latency
TR; incurred by messages routing in this dimension (XSR and
ARR). The entering latency due to contention when the two
routing streams merge is given by the third term. The final
term gives the entering latency for the messages that skip the
dimension.

For large k, y is small and the latency is approximated by
Ti+, Ti + T R ~ . For k = 2 (binary n-cubes), T R ~ = 0; thus,

To calculate the routing latency T R ~ we use the model shown
in Fig. 13. Messages enter the dimension with rate XR, route

T;+I = T ; + (h ~ T ; / 8) .

IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 6, JUNE 1990

Fig. 13. Contention model for routing latency.

through a number of stages, denoted by boxes, and exit the
dimension. The latency due to contention in the stages sums
to T R ~ . Given that a message is to be routed in a dimension,
the expected number of channels traversed by the message is
(k/2), one entering channel and (T = (k - 2)/2 continuing
channels. Thus, the average message rate on channels contin-
uing in the dimension is XC = (TAR.

Using the average message rate to calculate latency is an
approximation. The symmetry of the network assures that the
traffic on physical channels is uniform. However, using virtual
channels and e-cube routing [8] results in logical channels
that form a spiral. Traffic on the jth channel on this spiral
is given by hc, = (j - (i 2 + i) / 2 k) h ~ . Using the uniform
physical message rate results in a slightly pessimistic estimate
of latency since contention for the physical channel occurs on
flit boundaries while contention for the logical channel occurs
on message boundaries.

To compute T R ~ we work backwards from the output. The
service time in the last continuing channel in dimension i is
Ti(o-l) = Ti. Once we know the service time for the jth
channel, Ti,, the additional service time due to contention at
the j - 1st channel is given by multiplying the probability of
a collision X R T ; ~ by the expected waiting time for a collision
Ti0/2. Repeating this calculation (T times gives us Tio.

Equation (23) is valid only when hc < Ti/2. If the message
rate is higher than this limit, there is no steady-state solution
and latency becomes infinite. There are two solutions to (23).
Here we consider only the smaller of the two latencies. The
larger solution corresponds to a state that is not encountered
during normal operation of a network.

To calculate T R ~ we also need to consider the possibility of
a collision on the entering channel.

If sufficient queueing is added to each network node, the ser-
vice times do not increase, only the latency and (24) and (22)
become

I \ " ,l I "'

Ti+l = Ti + (1 - 7)TRi f (y (l - '-f>3 + y3(1 - y))hETO.

(26)

To be effective, the total queueing between the source and
destination should be greater than the expected increase in
latency due to blocking. Two flits of queueing per stage are
sufficient when X < 0.3 and L < 200. Longer messages result
in a longer service time TO and require additional queueing.
The analysis here is pessimistic in that it assumes no queueing.

Using (22), we can determine 1) the maximum throughput
of the network and 2) how network latency increases with
traffic.

Figs. 14 and 15 show how latency increases as a function
of applied traffic for 1K node and 4K node k-ary n-cubes.
The vertical axis shows latency in cycles. The horizontal axis
is traffic per node, A, in bitskycle. The figures compare mea-
surements from a network simulator (points) to the latency
predicted by (24) (lines). The simulation agrees with the pre-
diction within a few percent until the network approaches sat-
uration.

For 1K networks, a 32-ary 2-cube always gives the low-
est latency. For 4K networks, a 16-ary 3-cube gives the low-
est latency when X < 0.2. Because latency increases more
slowly for two-dimensional networks, a 64-ary 2-cube gives
the lowest latency when X > 0.2. At the left side of each graph
(X = 0), latency is given by (12). As traffic is applied to the

DALLY: k-ARY n-CUBE INTERCONNECTION NETWORKS 783

- 400 - 8
U

350

t 30C
25C

*
c

A

20c

15C

1 oc

50

0

I r n '
. . I

_:' ,
.,' I

A k-2. n=10

- k=32. n=2
- - - k-4.n-5 ,:., A

..." : A
A

. ' . ' A

I I I I

0.1 0.2 0.3 0.4
Traffic (fraction of capacity)

Fig. 14. Latency versus traffic (A) for 1K node networks: 32-ary 2-cube,
4-ary 5-cube, and binary 10-cube, L = 200 bits. Solid line is predicted
latency, points are measurements taken from a simulator.

;i 400

- 6 350

$ 300

250

a
U
-
*
c

A

200

150

100

50

0

I I I ,.I. I

+..';'
..:' , x .' ,

:' I
.:' r X ,

0.1 0.2 0.3 0.4
Traffic (fractlon of capacity)

Fig. 15. Latency versus traffic (X) for 4K node networks: 64-ary 2-cube,
16-ary 3-cube, 8-ary 4-cube, 4-ary 6-cube, and binary 12-cube, L = 200
bits. Solid line is predicted latency, points are measurements taken from a
simulator.

network, latency increases slowly due to contention in the net-
work until saturation is reached. Saturation occurs when X is
between 0.3 and 0.5 depending on the network topology. Net-
works should be designed to operate on the flat portion of the
curve (A < 0.25).

When the network saturates, throughput levels off as shown
in Figs. 16 and 17. These figures show how much traffic is
delivered (vertical axis) when the nodes attempt to inject a
given amount of traffic (horizontal axis). The curve is linear
(actual = attempted) until saturation is reached. From this
point on, actual traffic is constant. This plateau occurs be-
cause l) the network is source queued, and 2) messages that
encounter contention are blocked rather than aborted. In net-
works where contention is resolved by dropping messages,
throughput usually decreases beyond saturation.

To find the maximum throughput of the network, the source
service time TO is set equal to the reciprocal of the message
rate, XE, and (22) , (23) , and (24) are solved for XE. At this

- m a 0 2
4

0 1

0 0
I

I I 1 I

0 2 0 4 0 6 0 8
Offered Traffic (fraction of capacity)

2-cube, 4-ary 5-cube, and binary 10-cube, L = 200 bits.
Fig. 16. Actual traffic versus attempted traffic for 1K node networks: 32-ary

05 -
U

P
2
5 0 4
C

E p 0 3

E

a 0 2

-
- m
9

0 1

0 0

k-2 0-12
k-d "-6
k-8 n 4
h.16 n=3
k&d n.2

Offered Traffic (fraction of capacity)

Fig. 17. Actual traffic versus attempted traffic for 4K node networks: 64-ary
2-cube, 16-ary 3-cube, 8-ary 4-cube, 4-ary 6-cube, and binary 12-cube,
L = 200 bits.

TABLE I

LATENCY IN CYCLES
MAXIMUM THROUGHPUT AS A FRACTION OF CAPACITY AND BLOCKING

4K Nodes 1K Nodes Parameter

Dimension 2 5 10 2 3 4 6 1 2
radix 32 4 2 6 4 1 6 8 4 2
Max Throughput 0.36 0.41 0.43 0.35 0.31 0.31 0.36 0.41
Latencyh = 0.1 46.1 128. 233. 70.7 55.2 79.9 135. 241.
Latency X = 0.2 50.5 161. 269. 73.1 70.3 112. 181. 288.
Latency X = 0.3 59.3 221. 317. 78.6 135. 245. 287. 357.

operating point the network can accept no more traffic. Mes-
sages are being offered as fast as the network can deliver them.
The maximum throughput as a fraction of capacity for k-ary
n-cubes with 1K and 4K nodes is tabulated in Table I. Also
shown is the total latency for L = 200 bit messages at several
message rates. The table shows that the additional latency due
to blocking is significantly reduced as dimension is decreased.

In networks of constant bisection width, the latency of low-
dimensional networks increases more slowly with applied traf-
fic than the latency of high-dimensional networks. At X = 0.2 ,

784 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 6, JUNE 1990

1 the 32-ary 2-cube has the latency of the binary 10-cube.
At this point, the additional latency due to contention in the
32-ary 2-cube is 7T, compared to &IT, in the binary 10-cube.

Low-dimensional networks handle contention better because
they use fewer channels of higher bandwidth and thus get bet-
ter queueing performance. The shorter service times, L / W , of
these networks results in both a lower probability of collision,
and a lower expected waiting time in the event of a collision.
Thus, the blocking latency at each node is reduced quadrat-
ically as k is increased. Low-dimensional networks require
more hops, D = (n(k - 1)/2), and have a higher rate on con-
tinuing channels, XC . However, messages travel on the contin-
uing channels more frequently than on the entering channels,
thus most contention is with the lower rate channels. Having
fewer channels of higher bandwidth also improves hot-spot
throughput as described below.

C. Hot-Spot Throughput

In many situations traffic is not uniform, but rather is con-
centrated into hot spots. A hot spot is a pair of nodes that
accounts for a disproportionately large portion of the total net-
work traffic. As described by Pfister [181 for a shared-memory
computer, hot-spot traffic can degrade performance of the en-
tire network by causing congestion.

The hot-spot throughput of a network is the maximum
rate at which messages can be sent from one specific node
Pi to another specific node P j . For a k-ary n-cube with de-
terministic routing, the hot-spot throughput, OHS, is just the
bandwidth of a single channel W . Thus, under the assumption
of constant wire cost we have

OHS = w = k - 1. (27)

Low-dimensional networks have greater channel bandwidth
and thus have greater hot-spot throughput than do high-
dimensional networks. Low-dimensional networks operate
better under nonuniform loads because they do more re-
source sharing. In an interconnection network the resources
are wires. In a high-dimensional network, wires are assigned
to particular dimensions and cannot be shared between dimen-
sions. For example, in a binary n-cube it is possible for a wire
to be saturated while a physically adjacent wire assigned to a
different dimension remains idle. In a torus all physically adja-
cent wires are combined into a single channel that is shared by
all messages that must traverse the physical distance spanned
by the channel.

1V. CONCLUSION
Under the assumption of constant wire bisection, low-

dimensional networks with wide channels provide lower la-
tency, less contention, and higher hot-spot throughput than
higher-dimensional networks with narrow channels. Minimum
network latency is achieved when the network radix k and di-
mension n are chosen to make the components of latency due
to distance D and aspect ratio L/W approximately equal. The
minimum latency occurs at a very low dimension, 2 for up to
1024 nodes.

Low-dimensional networks reduce contention because hav-
ing a few high-bandwidth channels results in more resource

sharing and thus better queueing performance than hav-
ing many low-bandwidth channels. While network capac-
ity and worst-case blocking latency are independent of di-
mension, low-dimensional networks have a higher maximum
throughput and lower average blocking latency than do high-
dimensional networks. Improved resource sharing also gives
low-dimensional networks higher hot-spot throughput than
high-dimensional networks.

The results of this paper have all been made under the
assumption of constant channel delay, independent of channel
length. The main result, that low-dimensional networks give
minimum latency, however, does not change appreciably when
logarithmic or linear delay models are considered. In choosing
a delay model one must consider how the delay of a switching
node compares to the delay of a wire. Current VLSI routing
chips [9] have delays of tens of nanoseconds, enough time
to drive several meters of wire. For such systems a constant
delay model is adequate. As chips get faster and systems get
larger, however, a linear delay model will more accurately
reflect system performance.

Fat-tree networks have been shown to be universal in the
sense that they can efficiently simulate any other network of
the same volume [15]. However, the analysis of these net-
works has not considered latency. k-ary n-cubes with appro-
priately chosen radix and dimension are also universal in this
sense. A detailed proof is beyond the scope of this paper.
Intuitively, one cannot do any better than to fill each of the
three physical dimensions with wires and place switches at ev-
ery point of intersection. Any point-to-point network can be
embedded into such a 3-D mesh with no more than a constant
increase in wiring length.

This paper has considered only direct networks [19]. The
results do not apply to indirect networks. The depth and the
switch degree of an indirect network are analogous to the di-
mension and radix of a direct network. However, the bisection
width of an indirect network is independent of switch degree.
Because indirect networks do not exploit locality it is not pos-
sible to trade off diameter for bandwidth. When wire density
is the limiting resource, a high-bandwidth direct network is
preferrable to an indirect network.

The low-dimensional k-ary n-cube provides a very gen-
eral communication media for digital systems. These networks
have been developed primarily for message-passing concur-
rent computers. They could also be used in place of a bus or
indirect network in a shared-memory concurrent computer,
in place of a bus to connect the components of a sequen-
tial computer, or to connect subsystems of a special purpose
digital system. With VLSI communication chips, the cost of
implementing a network node is comparable to the cost of in-
terfacing to a shared bus, and the performance of the network
is considerably greater than the performance of a bus.

The networks described here have been demonstrated in
the laboratory and incorporated into commercial multiproces-
sors. The Torus Routing Chip (TRC) is a VLSI chip designed
to implement low-dimensional k-ary n-cube interconnection
networks [9]. The TRC performs wormhole routing in arbi-
trary k-ary n-cube interconnection networks. A single TRC
provides 8-bit data channels in two dimensions and can be

DALLY: k-ARY n-CUBE INTERCONNECTION NETWORKS 785

cascaded to add more dimensions or wider data channels. A
TRC network can deliver a 1504,it message in a 1024 node
32-ary 2-cube with an average latency of 7.5 P s , an order of
magnitude better performance than would be achieved by a

the Network Design Frame (NDF), improves the latency to

out end around connections) for its interconnection network
[I].

NOW that the latencv of communication networks has been

[I l l W. J . Dally et al., “Architecture of a message-driven processor,” in
Proc. 14th ACMIIEEE Symp. Comput. Architecture, June 1987,
pp. 189-196.

[12] W. J. Dally and P. Song, “Design of a self-timed VLSI multicomputer
communication controller,” in Proc. IEEE Int. Conf. Comput. De-
sign, 1987.

communication switching technique,” Comput. Networks, vol. 3, pp.

D. H. Lawrie, “Alignment and access of data in an array processor,”
IEEE Trans. Comput., vol. C-24, no. 12, pp. 1145-1155, Dec. 1975.
C. L. Leiserson, “Fat trees: Universal networks for hardware-efficient
supercomputing,” IEEE Trans. Comput., vol. C-34, no. 10, pp.

n-cube with bit-seria1 A new routing [13] p, Kermani and L, Kleinrock, “Virtual cut-through: A new

FZ 1 ps [12]. The Ametek 2010 uses a 16-ary 2-cube (with- 267-286, 1979.
[Id]

[I51

reduced to a few microseconds, the latency of the processing
nodes Triode dominates the overall latency. To efficiently make
use of a low-latency communication network we need a pro-
cessing node that interprets messages with very little overhead.
The design of such a message-driven processor is currently
underway [7], [l l] .

The real challenge in concurrent computing is software.
The development of concurrent software is strongly influenced
by available concurrent hardware. We hope that by providing
machines with higher performance internode communication
we will encourage concurrency to be exploited at a finer grain
size in both system and application software.

ACKNOWLEDGMENT

I thank C. Seitz of Caltech for his many helpful suggestions
during the early stages of this research.

REFERENCES
Ametek Corporation, Ametek 2010 product announcement, 1987.
K. E. Batcher, “Sorting networks and their applications,” in P m .

K. E. Batcher, “The Flip network in STARAN,” in P m . 1976 Int.
Conf. Parallel Processing, pp. 65-7 1.
V. E. Benes, Mathematical Theory of Connecting Networks and
Telephone Traffic.
L. N. Bhuyan and D. P. Agrawal, “Generalized hypercube and hyper-
bus structures for a computer network,” IEEE Trans. Comput., vol.
C-33, no. 4 , pp. 323-333, Apr. 1984.
S. Browning, “The tree machine: A highly concurrent computing envi-
ronment,” Dep. Comput. Sci., California Instit. Technol., Rep. 3760,
1980.
W. J . Dally, A VLSI Architecture for Concurrent Data Structures.
Hingham, MA: Kluwer, 1987.
W. J. Dally and C. L. Seitz, “Deadlock-free message routing in mul-
tiprocessor interconnection networks,” IEEE Trans. Comput., vol.
C-36, no. 5, pp. 547-553, May 1987.
- , “The torus routing chip,” J. Distributed Syst., vol. 1, no. 3,

W. J . Dally, “Wire efficient VLSI multiprocessor communication net-
works,” in Proc. Stanford Conf. Advanced Res. VLSI, Losleben,
Ed.

AFIPS FJCC, vol. 32, 1968, pp. 307-314.

New York: Academic, 1965.

pp. 187-196, 1986.

Cambridge, MA: MIT Press, Mar. 1987, pp. 391-415.

892-901, -Oct. -1985.
C. A. Mead and L. A. Conway, Introduction to VLSI Systems.
Reading, MA: Addison-Wesley, 1980.
M. C. Pease, 111, “The indirect binary n-cube microprocessor array,”
IEEE Trans. Comput., vol. C-26, no. 5, pp. 458-473, May 1977.
G. F. Pfister and V. A. Norton, “Hot spot contention and combining
in multistage interconnection networks,” IEEE Trans. Comput., vol.
C-34, no. 10, pp. 943-948, Oct. 1985.
C. L. Seitz, “Concurrent VLSI architectures,” IEEE Trans. Corn-
put. , vol. C-33, no. 12, pp. 1247-1265, Dec. 1984.
C. L. Seitz et al., “The hypercube communications chip,” Dep. Com-
put. Sci., California Inst. Technol., Display File 5182:DF:85, Mar.
1985.
C. H. Sequin, “Single chip computers, The new VLSI building block,”
in Proc. Caltech Conf. VLSI, C. L. Seitz, Ed., Jan. 1979, pp.

H. J . Siegel, “Interconnection network for SIMD machines,” IEEE
Comput. Mag., vol. 12, no. 6 , pp. 57-65, June 1979.
H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE
Trans. Comput., vol. C-20, no. 2, pp. 153-161, Feb. 1971.
H. Sullivan and T. R. Bashkow, “A large scale homogeneous ma-
chine,” in Proc. 4th Ann. Symp. Comput. Architecture, 1977, pp.

435-452.

105- 124.
[25] A. S. Tanenbaum, Computer Networks. Englewood Cliffs, NJ:

Prentice-Hall, 1981.
[26] C. D. Thompson, “A complexity theory of VLSI,” Dep. Com-

put. Sri., Carnegie-Mellon Univ., Tech. Rep. CMU-CS-80.140, Aug.
1980.

William J. Dally (S’78-M’86) received the B.S.
degree in electrical engineering from Virginia Poly-
technic Institute, Blacksburg, in 1980, the M.S. de-
gree in electrical engineering from Stanford Univer-
sity, Stanford, CA, in 1981, and the Ph.D. degree
in computer science from Caltech in 1986.

From 1980 to 1982, he worked at Bell Telephone
Laboratories where he contributed to the design of
the BELLMAC-32 microprocessor. From 1982 to
1983 he worked as a consultant in the area of dig-
ital systems design. From 1983 to 1986 he was a

Research Assistant and then a Research Fellow at Caltech. He is currently
an Associate Professor of Computer Science at the Massachusetts Institute of
Technology. His research interests include concurrent computing, computer
architecture, computer-aided design, and VLSI design.

