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Abstract

The torus routing chip (TRC) is a self-timed chip that performs deadlock-free cut-through
routing in k-ary n-cube multiprocessor interconnection networks using a new method of
deadlock avoidance called wvirtual channels. A prototype TRC with byte wide self-timed
communication channels achieved on first silicon a throughput of 64Mbits/s in each dimen-
sion, about an order of magnitude better performance than the communication networks
used by machines such as the Caltech Cosmic Cube or Intel iPSC. The latency of the
cut-through routing of only 150ns per routing step largely eliminates message locality con-
siderations in the concurrent programs for such machines. The design and testing of the

TRC as a self-timed chip was no more difficult than it would have been for a synchronous
chip.
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1 Introduction

Message-passing concurrent computers such as the Caltech Cosmic Cube [13] and Intel iPSC
[6] consist of many processing nodes that interact by sending messages over communication
channels between the nodes. We designed the torus routing chip (TRC) as a building
block to construct high-throughput, low-latency k-ary n-cube interconnection networks for
message-passing concurrent computers.

The TRC is a self-timed VLSI circuit that provides deadlock-free packet communications in
k-ary n-cube (torus) networks [12] with up to k = 256 processors in each dimension. While
intended primarily for n = 2-dimensional networks, the chips can be cascaded to handle
n-dimensional networks using [§] TRC chips at each processing node. A prototype TRC
has been laid out, fabricated, and tested.

Even if only two dimensions are used, the TRC can be used to construct concurrent comput-
ers with up to 216 nodes. It would be very difficult to distribute a global clock over an array
of this size [4]. To avoid this problem, the TRC is entirely self-timed [11], thus permitting
each processing node to operate at its own rate with no need for global synchronization.
Synchronization, when required, is performed by arbiters in the TRC.

To reduce the latency of communications that traverse more than one channel, the TRC
uses cut-through [7] routing rather than store-and-forward routing. Instead of reading an
entire packet into a processing node before starting transmission to the next node, the TRC
forwards each byte of the packet to the next node as soon as it arrives. Cut-through routing
thus results in a message latency that is the sum of two terms, one of which depends on the
message length, L, and other of which depends on the number of communication channels
traversed, D. Store-and-forward routing gives a latency that depends on the product of L
and D. Another advantage of cut-through routing is that communications do not use up the
memory bandwidth of intermediate nodes. A packet does not interact with the processor
or memory of intermediate nodes along its route. Packets remain strictly within the TRC
network until they reach their destination.

The TRC uses virtual channels to perform deadlock-free routing in torus networks. By
splitting each physical channel into two virtual channels and making routing dependent
on the virtual channel on which a message arrives, the TRC converts the cycle of channel
dependencies in each dimension into a spiral.

This paper describes the considerations that went into the design of the TRC in a “top-
down” order that starts with a formal discussion of the deadlock problem in Section 2. We
develop a model of communications in multiprocessor interconnection networks and prove
a strong theorem about deadlock. Based on this model, the concept of virtual channels is

presented in Section 3. Sections 4 and 5 present the design of the TRC at the system and
logical levels. Experimental results are reviewed in Section 6.

2 Deadlock-Free Routing

Deadlock in the interconnection network of a concurrent computer occurs when no message
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Figure 1: Deadlock in a 4-Cycle

can advance toward its destination because the queues of the message system are full 8]
Consider the example shown in Figure 1. The queues of each node in the 4-cycle are
filled with messages destined for the opposite node. No message can advance toward its
destination; thus the cycle is deadlocked. In this locked state, no communication can occur
over the deadlocked channels until exceptional action is taken to break the deadlock.

The technique of virtual channels allows deadlock-free routing to be performed in any
strongly-connected interconnection network [2]. This technique involves splitting physical
channels on cycles into multiple virtual channels and then restricting the routing so the
dependence between the virtual channels is acyclic.

Definition 1 A flow control digit or flit is the smallest unit of information that a queue or
channel can accept or refuse. Generally a packet consists of many flits. Each packet carries
its own routing information.

We have adopted this complication of standard terminology to distinguish between those
flow control units that always include routing information - viz. packets - and those lower
level flow control units that do not - viz. flits. The literature on computer networks [16] has
been able to avoid this distinction between packets and flits because most networks include
routing information with every flow control unit; thus the flow control units are packets.
That is not the case in the interconnection networks used by message-passing concurrent
computers such as the Caltech Cosmic Cube [13].

We assume the following:

1. Every packet arriving at its destination node is eventually consumed.
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2. A node can generate packets destined for any other node.

3. The route taken by a packet is determined only by its destination, and not by other
traffic in the network.

4. A node can generate packets of arbitrary length. Packets will generally be longer than
a single flit.

5. Once a queue accepts the first flit of a packet, it must accept the remainder of the
packet before accepting any flits from another packet.

6. An available queue may arbitrate between packets that request that queue space, but
may not choose amongst waiting packets.

7. Nodes can produce packets at any rate subject to the constraint of available queue
space (source queued).

The following definitions develop a notation for describing networks, routing functions, and
configurations.

Definition 2 An interconnection network, I, is a strongly connected directed graph, I =
G(N,C). The vertices of the graph, N, represent the set of processing nodes. The edges of
the graph, C, represent the set of communication channels. Associated with each channel,
¢;, is a queue with capacity cap(c;). The source node of channel ¢; is denoted s; and the
destination node d;.

Definition 8 A routing function R : C X N — C maps the current channel, ¢:, and des-
tination node, n4, to the next channel, ¢,, on the route from ¢, to ng, R(ce,ng) = cn. A
channel is not allowed to route to itself, ¢, # ¢,. Note that this definition restricts the
routing to be memoryless in the sense that a packet arriving on channel c, destined for ng
has no memory of the route that brought it to c.. However, this formulation of routing as a
function from C x N to C has more memory than the conventional definition of routing as
a function from N x N to C. Making routing dependent on the current channel rather than
the current node allows us to develop the idea of channel dependence. Observe also that
the definition of R precludes the route from being dependent on the presence or absence
of other traffic in the network. R describes strictly deterministic and non-adaptive routing
functions.

Definition 4 A channel dependency graph, D, for a given interconnection network, I, and

routing function, R, is a directed graph, D = G(C, E). The vertices of D are the channels
of I. The edges of D, are the pairs of channels connected by R.:

E = {(c;,¢;)|R(ci,n) = ¢; for some n € N}. (1)

Since channels are not allowed to route to themselves, there are no 1-cycles in D.

Definition 5 A configuration is an assignment of a subset of N to each queue. The number
of flits in the queue for channel ¢; will be denoted size(c;). If the queue for channel c; contains
a flit destined for node ng4, then member(ng, c;) is true. A configuration is legal if
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Ve; € C, size(c;) < cap(c;). (2)

Definition 6 A deadlocked configuration for a routing function, R, is a non-empty legal
configuration of channel queues such that

Ve; € C, (Vn > member(n, ¢;), n # d; and ¢; = R(c;,n) = size(c;) = cap(c;))  (3)

In this configuration no flit is one step from its destination, and no flit can advance be-
cause the queue for the next channel is full. A routing function, R, is deadlock-free on an
interconnection network, I, if no deadlock configuration exists for that function on that
network.

Theorem 1 A routing function, R, for an interconnection network, I, is deadlock-free iff
there are no cycles in the channel dependency graph, D.

Proof:

= Suppose a network has a cycle in D. Since there are no 1-cycles in D, this cycle must
be of length two or more. Thus one can construct a deadlocked configuration by filling the
queues of each channel in the cycle with flits destined for a node two channels away, where
the first channel of the route is along the cycle.

<= Suppose a network has no cycles in D. Since D is acyclic one can assign a total order
to the channels of C so that if (c;,c;) € E then ¢; > ¢;. Consider the least channel in this
order with a full queue, ¢;. Every channel, c,, that ¢; feeds is less than ¢;, and thus does

not have a full queue. Thus, no flit in the queue for ¢; is blocked, and one does not have
deadlock. N

3 Virtual Channels

Now that we have established this if-and-only-if relationship between deadlock and the
cycles in the channel dependency graph, we can approach the problem of making a network
deadlock-free by breaking the cycles. We can break such cycles by splitting each physical
channel along a cycle into a group of virtual channels. Each group of virtual channels shares
a physical communication channel; however, each virtual channel requires its own queue.

Consider for example the case of a unidirectional four-cycle shown in Figure 2A, N =
{no,...,n3}, C = {co,...,c3}. The interconnection graph I is shown on the left and the
dependency graph D is shown on the right. We pick channel ¢y to be the dividing channel
of the cycle and split each channel into high virtual channels, ¢y, .. .,c13, and low virtual
channels, cqp, ..., cos, as shown in Figure 2B.

Packets at a node numbered less than their destination node are routed on the high channels,
and packets at a node numbered greater than their destination node are routed on the low
channels. Channel ¢gp is not used. We now have a total ordering of the virtual channels
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Figure 2: Breaking Deadlock with Virtual Channels

according to their subscripts: c13 > c12 > c11 > €10 > cos > co2 > coy. Thus, there is
no cycle in D, and the routing function is deadlock-free. In [2] this technique is applied
to construct deadlock-free routing functions for k-ary n-cubes, cube-connected cycles, and
shuffle-exchange networks. In each case virtual channels are added to the network and the
routing is restricted to route packets in order of decreasing channel subscripts. In the next
two sections, the routing function for k-ary n-cubes is developed into a chip.

Many deadlock-free routing algorithms have been developed for store-and-forward computer
communications networks [5]. These algorithms are all based on the concept of a structured
buffer pool. The packet buffers in each node of the network are partitioned into classes, and
the assignment of buffers to packets is restricted to define a partial order on buffer classes.
The structured buffer pool method has in common with the virtual channel method that
both prevent deadlock by assigning a partial order to resources. The two methods differ
in that the structured buffer pool approach restricts the assignment of buffers to packets
while the virtual channel approach restricts the routing of messages. Either method can
be applied to store-and-forward networks, but the structured buffer pool approach is not
directly applicable to cut-through networks, since the flits of a packet cannot be interleaved.

4 System Design
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Figure 3: A Dimension 4 Node

The torus routing chip (TRC) can be used to construct arbitrary k-ary n-cube interconnec-
tion networks. Each TRC routes packets in two dimensions, and the chips are cascadable
as shown in Figure 3 to construct networks of dimension greater than two. The first TRC
in each node routes packets in the first two dimensions and strips off their address bytes
before passing them to the second TRC. This next chip then treats the next two bytes as
addresses in the next two dimensions and routes packets accordingly. The network can be
extended to any number of dimensions.

A block diagram of a two-dimensional message-passing concurrent computer constructed
around the TRC is shown in Figure 4. Each node consists of a processor, its local memory,
and a TRC. Each TRC in the torus is connected to its processor by a processor input channel
and a processor output channel. Connections on the edges of the torus wrap around to the
opposite edge. One can avoid the long end-around connection by folding the torus, as shown
in Figure 5.

A flit in the TRC is a byte whose 8 bits are transmitted in parallel. The X and Y channels
each consist of 8 data lines and 4 control lines. The 4 control lines are used for separate
request/acknowledge signal pairs for each of two virtual channels. The processor channels
are also 8 bits wide, but have only two control lines each.

The packet format is shown in Figure 6. A packet begins with two address bytes. The bytes
contain the relative X and Y addresses of the destination node. The relative address in a
given direction, say X, is a count of the number of channels that must be traversed in the
X direction to reach a node with the same X address as the destination. After the address
comes the data field of the packet. This field may contain any number of non-zero data
bytes. The packet is terminated by a zero tail byte. Later versions of the TRC may use an
extra bit to tag the tail of a packet, and might also include error checking.
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Figure 7: Virtual Channel Protocol

The TRC network routes packets first in the X direction, then in the Y direction. Packets
are routed in the direction of decreasing address, decrementing the relative address at each
step. When the relative X address is decremented to zero, the packet has reached the correct
X coordinate. The X address is then stripped from the packet, and routing is initiated in
the Y dimension. When the Y address is decremented to zero, the packet has reached the
destination node. The Y address is then stripped from the packet, and the data and tail
bytes are delivered to the node.

Each of the X and Y physical channels is multiplexed into two virtual channels. In each
dimension packets begin on virtual channel 1. A packet remains on virtual channel 1 until
it reaches its destination or address zero in the direction of routing. After a packet crosses
address zero it is routed on virtual channel 0. The address 0 origin of the torus network in
X and Y is determined by two input pins on the TRC. The effect of this routing algorithm
is to break the channel dependency cycle in each dimension into a two-turn spiral similar
to that shown in Figure 2. Packets enter the spiral on the outside turn and reach the inside
turn only after passing through address zero.

Each virtual channel in the TRC uses the 2-cycle signaling convention shown in Figure 7.
Each virtual channel has its own request (R) and acknowledge (A) lines. When R = A,
the receiver is ready for the next flit (byte). To transfer information, the sender waits for
R = A, takes control of the data lines, places data on the data lines, toggles the R line, and
releases the data lines. The receiver samples data on each transition of R line. When the
receiver is ready for the next byte, it toggles the A line.

The protocol allows both virtual channels to have requests pending. The sending end does
not wait for any action from the receiver before releasing the channel. Thus, the other
virtual channel will never wait longer than the data transmission time to gain access to
the channel. Since a virtual channel always releases the physical channel after transmitting
each byte, the arbitration is fair. If both channels are always ready, they will alternate
bytes on the physical channel.

Consider the example shown in Figure 8. Virtual channel X1 gains control of the physical
channel, transmits one byte of information, and releases the channel. Before this informa-
tion is acknowledged, channel X0 takes control of the channel and transmits two bytes of
information. Then X1, having by then been acknowledged, takes the channel again.
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5 Logic Design

As shown in Figure 9, the TRC consists of five input controllers, a five by five crossbar
switch, five output queues, and two output multiplexers. There is one input controller and
one output controller for each virtual channel. The output multiplexers serve to multiplex
two virtual channels onto a single physical channel.

The input controller is responsible for packet routing. When a packet header arrives, the
input controller selects the output channel, adjusts the header by decrementing and some-

5x5
Crossbar
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Y1

YO0

10

10

10
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Figure 9: TRC Block Diagram
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times stripping the byte, and then passes all bytes to the crossbar switch until the tail byte

is detected.

The input controller, shown in Figure 10, consists of a datapath and a self-timed state
machine. The datapath contains a latch, a zero checker, and a decrementer. A state
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Figure 10: Input Controller Block Diagram

latch, logic array, and control logic comprise the state machine. When the request line
for the channel is toggled, data is latched, and the zero checker is enabled. When the
zero checker makes a decision, the logic array is enabled to determine the next state, the
selected crossbar channel, and whether to strip, decrement, or pass the current byte. When
the required operation has been completed, possibly requiring a round trip through the
crossbar, the state and selected channel are saved in cross-coupled multi-flops and the logic
array is precharged.

The input controller and all other internal logic operates using a 4-cycle self-timed signaling
convention [11]. One function of the state machine control logic is to convert the external
2-cycle signaling convention into the on-chip 4-cycle signaling convention. The signaling
convention is converted back to 2-cycle at the output pads.

The crossbar switch performs the switching and arbitration required to connect the five
input controllers to the five output queues. A single crosspoint of the switch is shown in
Figure 11. A two-input interlock (mutual-exclusion) element in each crosspoint arbitrates
requests from the current input channel (row) with requests from all lower channels (rows).
The interlock elements are connected in a priority chain so that an input channel must win

the arbitration in the current row and all higher rows before gaining access to the output
channel (column).

The output queues buffer data from the crossbar switch for output. The queues are each of
length four. While a shorter queue would suffice to decouple input and output timing, the
longer queue also serves to smooth out the variation in delays due to channel conflicts.

Each output multiplexer performs arbitration and switching for the virtual channels that
share a common physical channel. As shown in Figure 12, a small self-timed state machine
sequences the events of placing the data on the output pads, asserting request, and removing
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the output data. An interlock element is used to resolve conflicts between channels for the
data pads.

To interface the on-chip equipotential region to the off-chip equipotential region that con-
nects adjacent chips, self-timed output pads (Figure 7.22 in [11]) are used. A Schmidt
Trigger and exclusive-OR gate in each of these pads signals the state machine when the pad
is finished driving the output. These completion signals are used to assure that the data
pads are valid before the request is asserted and that the request is valid before the data is
removed from the pads and the channel released.

6 Experimental Results

The design of the TRC began in August 1985. The chip was completely designed and
simulated at the transistor level before any layout was performed. The circuit design was
described using CNTK, a language embedded in C [3], and was simulated using MOSSIM
[1]. A subtle error in the self-timed controllers was discovered at the circuit level before
any time-consuming layout was performed. Once the circuit design was verified, the TRC
was laid out in the new MOSIS scalable CMOS technology [17] using the Magic system
[10]. A second circuit description was generated from the artwork and six layout errors
were discovered by simulation of the extracted circuit. The verified layout was submitted
to MOSIS for fabrication in September 1985.

The first batch of chips was completed the first week of December but failed to function
because of fabrication errors. A second run of chips (same design), returned the second
week of December, contained some fully functional chips.
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Performance measurements on the chips are shown in Figure 14. To measure the maximum
channel rate, the output request and acknowledge lines were tied together, and the input
acknowledge was inverted and fed back into input request. In this configuration the chip
runs at a maximum speed, shown in Figure 14A, of ~4MHz. This sluggish performance,
about one fifth of what we expected, was traced to an overlooked critical path in the input
controller. The chip still functioned correctly thanks to the self-timing.

The delays from input request to output request and input acknowledge, shown in Fig-
ure 14B, are 150ns and 250ns respectively. Data propagation time from input to output
(not shown) was measured to be 60ns for both rising and falling edges. Thus data is set up
90ns ahead of the output request. Data hold time, shown in Figure 14C, is 20ns.

Tau model calculations suggest that a redesigned TRC should operate at 20MHz and have
an input to output delay of 50ns. The redesign will involve decoupling the timing of the
input controller by placing single stage queues between the input pads and input controller
and between the input controller and the crossbar switch. The input controller will be
modified to speed up critical paths.

7 Conclusion

This work was motivated by the ongoing design and implementation of experimental con-
current computers at Caltech and the investigation [15] of interconnection networks for
these machines. A strong argument for a binary n-cube interconnection was the existence
of the e-cube algorithm [9] for deadlock-free packet routing. Until the development of vir-
tual channels, we knew of no comparable algorithm for cubes of higher arity. The TRC
demonstrates the use of virtual channels to provide deadlock-free packet routing in k-ary
n-cube multiprocessor communication networks.

Communication between nodes of a message-passing concurrent computer need not be
slower than the communication between the processor and memory of a conventional sequen-
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tial computer. By using byte-wide datapaths and cut-through routing, the TRC provides
node-to-node communication times that approach main memory access times of sequential
computers. Communications across the diameter of a network, however, require substan-
tially longer than a memory access time.

In spite of our past success in building machines using binary n-cube interconnection net-
works, there are some compelling reasons to experiment with machines using a torus net-
work. First, the torus is easier to wire. Any network topology must be embedded in the
plane for implementation. The torus maps naturally into the plane with all wires the same
length; the cube maps into the plane in a less uniform way. Second, the torus more evenly
distributes load to communication channels. When a cube is embedded in the plane, a satu-
rated communication channel may run parallel to an idle channel. In the torus, by grouping
these channels together to make fewer but higher bandwidth channels, the saturated channel
can use all of the idle channel’s capacity.

Compare, for example, a 256-node binary 8-cube with a 256-node 16-ary 2-cube (16 x 16
torus) constructed with the same bisection width. If the 8-cube uses single bit communi-
cation channels, 256 wires will pass through a bisection of the cube, 128 in each direction.
Thus, with the same amount of wire we can construct a torus with 8-bit wide communi-
cation channels. Assuming the channels operate at the same rate !, by choosing the torus
network we trade a 4-fold increase in diameter (from 8 to 32) for a 8-fold increase in channel

throughput. In general, for a N = 2" node computer we trade a @ increase in diameter
for a 32ﬂ increase in channel throughput.

We plan to use the TRC and its successors in future experimental concurrent computers.
Our first machine will use the TRC along with commercial microprocessors and memory
parts to construct a 2-dimensional torus of several hundred processors. In 3um scalable
CMOS technology the TRC measures 4.5mm X 6.5mm with pads. After scaling to 1.6um
technology there will room on a single die to combine both the TRC and a simple processor.
With further scaling some of the processor’s local memory may be moved on-chip.

The TRC serves as still another counterexample to the myth that self-timed systems are
more complex than synchronous systems. The design of the TRC is not significantly more
complex than a synchronous design that performs the same function. As for speed, the
TRC will certainly be faster than a synchronous chip since each chip can operate at its full
speed with no danger of timing errors. A synchronous chip is generally operated at a slower
speed that reflects the timing of a worst-case chip and adds a timing margin.

The real challenge in concurrent computing is software. The development of concurrent
software is strongly influenced by available concurrent hardware. We hope that by providing
machines with higher performance internode communication we will encourage concurrency
to be exploited at a finer grain size in both system and application software.

!This assumption favors the cube since some of its channels are quite long while the torus channels are
uniformly short.
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