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Performance tunzng becomes harder as computer

technology advances. One of the factors is the increas-
ing complexity of memory hierarchies. Most modern

machines now use at least one levei of cache mem-
ory. To reduce executton stalls, cache mtsses must be
very low. Software techniques used to improve locality
have been developed for numerical codes, such as loop
blockzng and copying. Unfortunately, the behavtor of
direct mapped and set associative caches is still erratic
when large numerical data M accessed. Execution time

can vary drasticly for the same loop kernel depending
on uncontrolled factors such as array leading size. The

only software method available to improve execution
time stability is the copying of frequently used data,

which is costly in execution time. Users are not usu-
ally cache organisation experts. They are not aware

of such phenomena, and have no control over it.
In this paper, we show that the recently proposed

four-way skewed associative cache yields very stable
execution times and good average mtss ratios on blocked
algorithms. As a result, executton time is faster and

much more predictable than with conventional caches.

As a result of zts better comportment, it is possible to
use larger blocks sizes with blocked algorithms, which

will furthermore reduces blocking overhead costs.
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1 Introduction

Performance tuning on today’s computers has be-
come very complex. One factor of this complexity
is the use of memory hierarchies, and particularly of
cache memories. As the miss penalty is becoming
higher and higher, performance becomes very sensi-
tive to the cache performance. Unfortunately, the be-
haviors of direct-mapped and set associative caches
are very sensitive to small variations of the applica-
tion’s parameters. Since the caches are not perfect
(limited associativity, non-optimal replacement strat-

egY), performance may suffer unpredictably from con-
fhct misses even with blocked loops [7]. For instance,
in a recent study, Schlansker et al [9] ~showed that,
even with a very regular memory access patterns such
as iterating on the read of a fixed size memory sub-
block, the miss ratio on a 32-way set-associative cache
depends heavily on parameters such as the number of
rows of the whole matrix. In their examplle, depending
on whether the number of rows is 2727 or 2729, nearly

all the accesses result in a hit or nearly all the access
result in a miss. For most users, such unpredictable

behaviors can not be accepted. Getting predictable
and stable performance is a major issue.

Recently, the skewed associative cache, a new asso-

ciative cache structure has been proposed in [10, I I].

In this paper, we investigate the sensitivity of the
skewed associative cache to parameters such as size
of arrays or relative placements of the arrays in nu-
merical kernels on dense structures. Unlike usual set
associative caches, a four-way skewed associative cache
is quite insensitive to those application’s parameters.
This leads to better average miss ratio than set asso-
ciative cache and more predictable performance.

When using direct-mapped caches or set associa-
tive caches, copying is usually the only vii~ble software

solution to avoid unpredictable and catastrophic be-

haviors for some array dimensions; when using a four-
way skewed associative cache, blocking is sufficient,

thus extra computation cost for copying the arrays is
avoided.

Our simulations also established that, even when
using restructuring technique such as blocking and
copying, performance of direct-mapped caches are sig-
nificantly worse than performance of set and skewed
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associative caches. Moreover our experiments show
that even when blocking and copying is used the ex-
ecution time may vary in a large range for direct-
mapped and set associative caches depending on rela-
tive array placements.

On usual direct-mapped or set associative caches,

the behavior of caches on blocked algorithms degrades
very rapidly when the blocking factor increases. Ex-

periments have also been conducted which indicates
that, when using a four-way skewed associative cache,

a larger fraction of the cache may be used for blocking.
The remainder of the paper is organized as follows.

In Section 2, we recall the principles of a skewed asso-
ciative cache. In Section 3 we present a very simple ex-
periment which explains why skewed associative cache
should exhibit a better average behavior than a stan-
dard set associative cache. In Section 4, we present the
simulation tools which have been used in the paper.

In Section 5, the impact of various array placements is
studied on a few numerical kernels. Original, blocked

and blocked copied algorithms are studied. In Sec-
tion 6, we study the impact of the blocking factor on
performance and try to characterize the fraction of the

cache size that is available for blocking (resp. blocking
& copying) on set associative caches as and on skewed
associative caches. Section 7 summarizes this study.

Related work

Improving performance by reducing capacity and

conflict misses in numerical applications by software
technique has been addressed in many studies. First

studies [5, 13, 14, 8? 4] focused on limiting the size
of the current working set of the applications, thus
reducing the number of capacity misses on the cache.
Blocking or any unimodular transformations can be
used at compile time to enhance spatial and temporal
locality in applications.

But blocking is not a sufficient technique for many

applications and cache configurations. In order to

overcome this difficulty, blocks exhibiting high level of
reuse may be copied in order to control the placement

of data in memory and avoid placement conflicts in the

cache [12, 5, 7]. But copying may induce large over-
head on many numerical kernels. Techniques for deter-

mining whether copying is needed or not e.g. [12, 7])
\address direct-mapped caches and are sti 1 very con-

servative. Moreover these techniques would have to
be applied at run-time when the sizes and addresses
of arrays are unknown at compile time (e.g. calls to
library routines).

In order to avoid unpredictable and catastrophic
behavior of caches without copying, SchIansker et al
[9] proposed to use a complex hashing function for the
set selection in order to obtain a good and predictable
behavior. Nevertheless their proposal suffers from two
major drawbacks: first a high degree of associativity is
needed (in the 16-32 range) and second, some complex
hardware mechanism is needed to pseudo-randomize
the set selection in the cache.

2 Skewed associative caches

2.1 Principle

Skewed associative caches have been recently pro-

posed in [10, 11]. A X-way set associative cache is
built with X distinct banks. The memory block at

address D may be physically mapped on physical line

f(D) in any of the distinct banks. This vision of a
set associative cache fits with the physical implemen-

tation: X banks of static RAMs.
For a skewed associative cache (Figure 1), differ-

ent mapping functions are used for each cache banks
i.e., a memory bIock at address D may be mapped on

k
physical line ~. D) in cache bank O or in physical line

fl (D) in cache ank 1, etc.
It has been shown in [10, 11] that, for general appli-

cations! skewed associative caches exhibit an average

lower miss ratio than set associative caches.

2.2 Choosing skewing functions

When designing a skewed associative cache, the map-
ping functions may be chosen in order to minimize

conflict misses and hardware cost. We list some of
these properties [10, 11].

Inter-bank dispersion In a usual X-way set asso-

ciative cache, when (X+ 1) data blocks contend for the

same set in the cache, there is a conflict and one of the
blocks must be rejected from the cache.

Skewed-associative caches avoid such a situation by

scattering the data. Mapping functions can be chosen
such that whenever two data blocks conflict for a sin-
gle location in cache bank i, they have a very low
probability of conflicting for a location in cache bank

~ (Figure 1).

Local dispersion in a single bank Many appli-
cations exhibit spatial locality, therefore the mapping

functions must be chosen such as to avoid two “al-
most” neighboring data blocks conflicting for the same

physical cache lines in bank i. The mapping functions
fz must be chosen in order to limit mapping conflicts

such as the mapping of consecutive data blocks in a
single cache bank i.

Simple hardware implementation A key issue

for the overall performance of a processor is the pipeline

length. Using distinct mapping functions on the dis-

tinct cache banks should have no effects on perfor-

mance, as long as the computations of the mapping

functlon~ can be Implemented into a non critical stage
m the plpehne as not to lengthen the pipeline cycle.

2.3 An example of skewing functions

We present here the skewing functions which were
used in the simulations that illustrate this paper. These
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skewing functions are obtained by XORing a few bits

in the address of a memory block (as in [10, 1 l]).

Let us consider a skewed associative cache built

with 2 or 4 cache banks, each one consisting of 2“

cache lines of 2C bytes,
let a be the perfect-shuffle on n bits, data block at

memory address A32c+2n + A22n+c + A12C may be

mapped:

1. on cache line Al @ A2 in cache bank o

2. or-on cache line O(A1 ) @ A2 in cache bank 1

3. or on cache line a2(Al ) @ A2 in cache bank 2

4. or on cache line U3(A1) @ A2 in cache bank 3

These functions satisfy the criterion for “good” skew-
ing functions defined in [10] ( inter-bank dispersion,

local dispersion and low hardware costs).

A pseudo-LRU replacement policy similar to that
described in [11] was used in simulations.

3 How a skewed associative cache han-

dles conflict misses

We have conducted a very simple experiment to
illustrate the benefits that can be expected from a

skewed associative cache.
Let us consider a 512 lines cache. Let us con-

sider a collection of X data blocks each with a ran-
dom address. This collection is iteratively read 10
times. Direct-mapped, 2, 4,8,16 and 32-way set asso-
ciative, 2 and four-way skewed associative were simu-
lated. A pseudo-LRU replacement policy was used for

the skewed associative cache 1. The experiment was re-
peated on 100 different collections for every sequence

size.

3.1 Data dispersion

Figure 2a illustrates the average ratio of blocks that
remain valid in the cache after a single read pass of the

whole collection for collection sizes varying from 32 to
512.

The number of valid blocks in the 2-way skewed
associative cache is greater than the number of valid

blocks in the 2-way set associative cache and slightly
less than the number of valid blocks in the four-way

set associative cache.

The number of valid blocks in the four-way skewed

associative cache is approximately equal to the num-
ber of blocks valid in the 8-way set associative cache,
but is lower than the number of valid blocks in 16-way
and 32-way set associative caches.

After a single read sequence, for an equal associativ-
ity degree, more data will be on a skewed associative

cache than on a set associative cache.

] For the set associative cache, the parameter measured in

this experiment does not depend in any way of the replacement
policy

3.2 Self data reorganization

A second phenomenon accentuates the advantage of

the skewed associative over the set associative cache.

Figure 2b illustrates the average ratio of the blocks

in the sequence that remain valid in the cache after

ten successive reads of the whole sequence (sequence
varying from 32 to 512 blocks). For direct-mapped and
set associative caches, the number of valid blocks does
not evolve after the first sequence read: if a block is

missing its target set, loading the block will invalidate
another block in the cache.

However, in the skewed associative ca,che, the num-
ber of data blocks present at the same time in the
cache depends on the precise mapping of each data
block in the cache. Among the other possible loca-

tions for a data block D present in the cache at time

t,there may be an empty location. Block D may be
removed from the cache by a miss on an other block

D’ in bank i, but the next time D will be referenced,
D can be mapped m an empty location in bank j and
thus the number of data alive at the same time in the
cache will increase.

For instance, after ten iterations of the sequence

reading, the number of valid blocks in the four-way

skewed associative cache (resp. 2-way) is in the same
range as that of the 32-way set associative (resp. 8-

way) cache.
In blocked algorithms, block sizes are chosen in

such a way that the size of the reused dlata is smaller
than the cache size. It may be expected that the self

data reorganization in the skewed associative cache
will limit conflict misses on such blocked algorithms

and alow greater block size.
Notice that this example does not slhow sure per-

formance gain. Set distribution is not random in real
applications. In many cases, due to spatial locality set

associative caches work really well, but disastrous set
distribution may also be seen as it was shown in [7, 9]

and as it will be emphasised in the next, sections.

4 Evaluation methodology

In order to capture effective program behavior in-
cluding loop management and scalar references, we

chose to use effective program execution traces.
The Spa package developed by Gordon Irlam [6] was

used to generate address traces for programs executed
on a SUN SparcSt ation10. F77 Fortran compiler with

-04 -dalign optimizations was used.
No modification of the binary code to be analyzed

was required. User code of a single application can be
completely traced except for the OS kernel code. As
we studied the behavior of numerical kernels consisting
of a few nested loops, only data references were piped
to a cache simulator.

Five cache organizations were simulated in a single

path: direct-mapped, 2-way and four-way set associa-
tive, 2-way and four-way skewed associative caches.

In order to limit the sizes of the problems needed to
exceed cache capacity (and simulation time), a 8Kbyte
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cache was simulated. The cache line size chosen for the
simulation was 32 bytes.

Sensitivity to Parameter Variations In order

to measure the sensitivity of the cache behavior to

parameters such as array sizes or block sizes, system-
atic experiments were repeated while varying block

size and/or leading size (i.e. number of rows in a ma-
trix).

Evaluation of the execution time In order to ac-
curately estimate the overhead associated with block-
ing and copying on the execution time for the differ-
ent algorithms, a superscalar processor was simulated.
The simulated configuration was one branch unit, two
integer units, one load/store unit and two floating-
point units; a 2 bits branch target buffer was imple-

mented. For these simulations, an ideal cache was
assumed (i.e every reference hits).

We call the execution time obtained from this sim-
ulation the ideal execution time. In the remainder of

paper, we
kernel by:

T ezec =

roughly modelize the execution time of a

ideal execution time + 10 * Nm,, $ (1)

5 Associativity and blocking/copying

As previously mentioned, the impact on cache be-

havior of the software technique proposed to improve
data locality is not fully understood.

The experiments presented in this section evaluate
the cache performance for three loop kernels : 100 x
100 matrix-matrix multiply, 340 x 340 2D Jacobi loop
and 100 x 100 LU factorization. In all the experiments,

we vary the leading dimension of the arrays used in the
loops to highlight the impact of the array declaration

on the cache behavior. We simulated original, blocked
and copy blocked versions of the kernels.

The three original kernels were chosen because they
exhibit different characteristics:

1.

2.

3.

The matrix-matrix multiply is a the three-fold
nested loop where each data is reused many times.

Automatic blocking technique may be used on
this kernel.

The 213 Jacobi loop is a two-folded nest loop
where data reuse is limited. This loop can be au-
tomatically blocked. Due to limited data reuse,
overhead associated with copying is very high.

The LU 100P is a three-fold nested looD. Data
reuse is ver~ high. Deriving automa~ically a
blocked version of this loop is not easy; the blocked

and copy blocked versions of the LU loop used
in the paper were derived by hand.

For these three kernels, we measured the impact
of blocking and blocking & copying on the number of

cache misses, on extra memory references and on ex-
tra instructions and execution times. For blocked and

copy blocked versions of the applications, the block
size was chosen so that the total size of the blocks

is approximately equal to half of the cache size. As
shown in Section 6, this happens to be a good approx-

imation.

5.1 Matrix-matrix multiply

23 waa used as the blocking factor for the blocked
and blocked & copied versions. Statistics on the ex-

ecution of the three simulated algorithms are reported
in table 1. The number of instructions in the differ-
ent versions depends highly on the quality of hhe F77
compiler. For our examples, the F77 compiler unrolls

the inner most loop 4 times. This explains the large

difference between ideal execution time of the origi-
nal version of the algorithm and that of blocked, and

blocked & copied algorithms.

I 10”” rl~mal I BI ocked lBl&c o I

floating point ref 202iooo 2100000 2220000

data ref 2024880 2120751 2243408

instructions 5942009 7069993 7351430 -

ideal execution time 2093138 2711801 2807272

Table 1: Characteristics on the different matrix-

multiply versions

The data reuse in the 100x 100 matrix-matrix mul-

tiply is very high: each element of matrix B and C
are used 100 times, moreover each cache block con-

tains 4 words, then leading to 400 reads of a single
cache block. Such an optimal reuse can only be ob-
tained when the whole matrices fit in the cache. For
the blocked and blocked copied versions, a relatively

correct estimation of the minimal number of misses
is obtained by assuming a perfect cache but no reuse

across the blocks: 27500 misses.
Figure 4 illustrates the execution times for each of

the three versions run with numbers of rows of the
arrays varying from 100 to 550.

Original loop and blocked loop It clearly ap-

pears that direct-mapped and 2 and four-way set as-
sociative caches exhibit quite unpredictable behaviors
on the original version as well as on the blocked ver-
sion of the algorithm. For instance, execution time of

the blocked algorithm, the execution time vary from
from 3200000 cycles to 16000000 cycles, even with

a four-way set associative cache.
The number of misses on the 2-way skewed asso-

ciative cache is less irregular, and becomes quite reg-
ular on the four-way skewed associative cache. Notice
that the average miss ratio is also better on a four-
way skewed associative cache than on anyother cache
structure: for the blocked version, the average miss
number is around 62 000 for the four-way skewed as-
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sociative cache against 126 000 for the four-way set

associative cache.

Blocked & Copied loop Associating blocking and
copying brings relatively stable numbers of misses for

the matrix multiply.
With a four-way set associative cache, the execution

time varies between 3180000 to 4180000 cycles. But
we still notice that the behavior of the four-way skewed

associative cache has lower miss ratio average and a
more stable behavior than that of the other caches.
The quite stable but relatively poor performance of
the direct mapped cache must also be pointed out.

Summary For all cache organizations, except the

four-way skewed associative cache, the average execu-

tion time is clearly better on the blocked & copied

loop than on the blocked loop.

5.2 2D Jacobi Loop Kernel

The kernel studied here is a 2D Jacobi loop ex-
tracted from an application called PENAL [1], that

computes permeability in porous media using a finite
difference method. The original loop nest is shown in

Figure 3. In this kernel, the data reuse is more lim-
ited than in the matrix-multiply: 5 reuses per data on

arrays VXO, vyO, 3 reuses per data in array poz , and

only one access to each element of arrays ivx, ivy, vxn

and vyn. ivx and ivy are integer arrays. Since there
are 4 floating point words or 8 integer words per cache
block, the $~~,e~~ence misses on these seven arrays

represent + 2*34~*340 = 173400 misses.

Blocking tie loop does not induce any extra ref-
erence to the arrays, this explains why the ideal exe-
cution times for the original loop and for the blocked

loop are in the same range.
In terms of array accesses, the extra cost of copy-

ing is huge. The three arrays vxO,vyO and po have to
be copied generating 905938 extra references on float-

ing data: more than one third of the floating-point
data references are done while copying! Paradoxically,

the total number of memory references in three ver-

sions of the algorithm ( table 2) are in the same range
because the f77 compiler generates six references to
scalars used for address generation in the original and

the blocked algorithms inducing 674400 extra memory
references.

The execution times are given in Figure 5 for the

array leading size ranging from 340 to 600 .

Original loop The 10 x 340 floating-point distinct

elements and 2 x 340 distinct integer elements are used
in one iteration of the outermost loop, this exceeds
the size of the cache. Then most of the data used in
iteration j will be invalidated in the cache before it
can be reused during iteration j+ 1. This effect can be
seen on Fimre 5.

24 reuses are present, but analysis of the assembler code
confirms that one of this reuse is captured by registers

orlgmal Blocked 1311!kc

fioatmg point ref 1734008 1734008 263994;

2783428 ZFEFT72 2957116
instructions 6383412 6611319 8281656

ideal execution time 4179673 4164447 4748921

Table 2: Characteristics on the different 2D Jacobi
versions

Blocked loop As, for the matrix multiply, some

pathological behaviors can be observed for usual cache
structures, while the behavior of the four-way skewed

associative cache is quite uniform. Small irregularities
are essential due to good or bad alignernent of the

arrays on cache blocks.

Blocked & Copied loop Its advantage is to exhibit
a regular behavior, however the price of copying is
huge. As previously mentioned, the number of array
references is increased by 50%, so the Ideal execution

tzme is also significantly longer than for other kernel
implementations. For all cache organizations, but the

direct-mapped cache, the average number of misses is

50% higher than for the blocked loop.

5.3 LU factorization

The last loop nest we experimented is a 100 x 100
LU factorization without pivoting. The blocked and
blocked copied versions were derived by hand [3]. The
characteristics of the three codes are given in Table
3. On the blocked and blocked copy versions of the

algorithms, the numbers of memory accesses (and also
the ideal execution times) are significantly lower than

in the original LU factorization [3]. The number of
misses for the three codes are given in Figure 6.

Original loop Only the direct mapped cache ex-

hibits erratic behavior. In average the num~ber of misses
for the direct mapped cache is 12 YO higher than on

the other caches.

Blocked loop Blocking is effective in average on
this kernel but some very high miss ratio are exhib-

ited for some particular values of the leading size with
direct mapped and set associative cache.

Blocked & Copied loop Copying is efl’ective in re-
ducing peak miss rate. Nevertheless significant behav-
ior differences for different parameters are (encountered

for direct-mapped and set associative caches. For in-
stance on the four-way set associative cache, the exe-
cution time vary from 1255328 to 1910138 cycles.

With the previous experiments, four- way skewed
associative cache exhibits a good and stable behavior
for the blocked version of the algorithm, cclpying is not
needed.
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Orlgmal Blocked B1 & co

floating point ref 1004952 728111 768991

data ref 1010074 738036 778279

instructions 3076031 2465279 2737860

ideal execution time 1400495 1023964 1049508

Table3: Characteristics on the different LU versions

6 Use of cache space

In the previous experiments, the block size was
computed so the data reused in a block fits in approx-
imately half of the cache size. For each algorithm, the

best blocking factor depends on the cache organiza-
tion.

Experiments previously presented in Section 3 seems
to indicate that skewed associative caches allows a

better usage of the cache space than set associative
caches.

The experiments presented in this section measure
the influence of the blocking factor on the execution
time for a 120 x 120 matrix-matrix multiply for
both blocked and blocked & copied versions. The
120 x 120 size was chosen because the respective num-
bers of block matrix multiplies vary gracefully when

the blocking factor varies from 8 to 323.

Statistics on the blocked and blocked & copied matrix-
matrix multiplies for the different blocking factors are

reported in Table 4 (resp. Table 4). When the block
size increases, the overhead due to loop blocking de-

creases the number of floating point data references,
the number of instructions and the ideal execution

ttme, thus using a large block size is desirable, if it
does not increase too much the miss numbers.

Figure 7 illustrates the minimum, maximum and
average execution times in function of the block sizes

for both blocked and blocked & copied loops4. Ex-

periences were conducted varying the row numbers in
the matrix from 120 to 220.

Blocked loop For all cache structures, the mini-

mum execution times are obtained for a block size
of 20 and are in the same range (except for direct-

mapped caches).
A 20 ‘ZOdifference between the minimum execution

time and the average execution time on a four-way set
associative cache must be noted while on the four-way
skewed associative cache, the difference bet ween min-
imum execution time and average execution time is of

only 3%. Then difference between best average per-
formance for four-way skewed associative caches and
four-way set associative caches is about 18yo in favor
of skewed associative caches.

3As the f77 compiler uuroll four iterations of the inuer most

loop, only multiple of 4 were considered as blocking factors

4For blocked loops, maximum execution times for direct-

mapped and set associative caches are in the range of 20-30
millions of cycles, and do not appear on the curves!

When using direct-mapped and set associative caches,
the execution times for particular values of the lead-
ing dimension reach clearly unacceptable values (over
20 000000 cycles) and this for all blocking factors.
When using a four-way skewed associative cache, the

difference between maximum execution time and av-

erage execution time remains in the 20% range.

Blocked & copied loop In terms of zdeal execu-

iion time, the overhead due to blocking & copying

over blocking appears to be quite important for low
blocking factors (12 or 16).

Figure 7 clearly illustrates that for direct-mapped
caches as well as set associative caches, larger blocking
factors may be used when blocking and copy method
than with simple blocking thus resulting in better av-

erage performance. This average performance remains
relatively poor for direct-mapped cache.

For direct-mapped and set associative caches, peak
execution times are also dramatically lower when block-

ing and copying data than when only blocking it. Nev-
ertheless differences on performance depending on the

leading size of the arrays may be quite significant;
for instance for the four-way set associative cache,
for a blocking factor of 20, the execution time for
the blocked and copy matrix multiply varies between
4934514 cycles and 6767734 cycles: more than 30 ~o !.

This has to be compared with the remarkable sta-

bility of the execution time for the four-way skewed

associative cache; with a blocking factor of 24, the ex-

ecution time varies here between 4960040 cycles and
5208650 cycles (only a 5% difference).

7 Conclusion

In this paper, we have studied the behavior of origi-

nal, blocked and blocked & copied versions of three nu-
merical kernels while varying the relative placement of
the arrays in memory on skewed associative caches and

on conventional set associative and direct-mapped

caches.
Our experiments have emphasized that, when us-

ing a set associative cache or a direct-mapped cache
blocking is not sufficient to guarantee a correct level
of performance; this is coherent with previous studies
[7, 9]. Our experiments have also shown that blocking
and copying, however costly, allows to reach a better
level of performance when using these cache organiza-
tions. It has also pointed out that :

● Direct-mapped caches deliver poor average per-

formance compared to other cache configurations.

● When using set associative caches, significant ex-

ecution time differences exist for different array
placements, even for blocked & copied versions
of the algorithms.

The high variations of execution times shows that for
many numerical applications, set associative caches
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are not adequate structures and any performance num-

bers are very suspect as a representation of the real
performance of the processor.

The experiments presented in this paper show that

the skewed associative cache recently proposed in [10,
11] has lower miss ratio and has a more stable behavior

than the corresponding set associative cache.
Our experiments have shown that the behavior of

the four way skewed associative cache is quite insensi-
tive to variations of the array placements in memory.

It may provide to the user a quite predictable cache
behavior and then a predictable performance. This is

particularly true on blocked and on blocked & copied
versions of the algorithms. While copying is not neces-

sary to improve average performance of skewed asso-
ciative caches, when direct-mapped and set associative

caches all necessitate copying to improve cache behav-
ior and get relatively predictable performance. This is
a clear advantage over set associative caches when the
reuse factor is small and the cost of copying is too high
compared to the remaining of the computation, (as in
5.2) or when copying is impossible. If a skewed asso-
ciative cache is used and if copying is possible, it may

be used in order to guarantee a very stable behavior.
At last, we have shown in section 3, that, using

skewed associativity allows to effectively use more cache

space than with set associative cache. As a result, it is
possible to use a larger blocking factor with a skewed

associative cache than with a set associative cache (see
Section 6). This leads to a reduced blocking overhead.

On today’s processors, set associative caches or direct-
mapped caches are used. To track performance, com-
piler designers and application programmers must im-
prove data locality (i.e. limiting capacity misses) and

limit conflicts misses at a reasonable cost (i.e. avoiding
copying when possible). Using a four-way skewed as-

sociative in a processor would allow the user to focuss
his efforts on only improving data locality.
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AO Al A2

Figure 1: A two-way skewed-associative cache: AO, Al and A2 compete for the same location in bank 0, but can

be present at the same time, as they do not map to the same location in bank 1
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Figure 2: (a) Ratio of valid blocks after one read, (b) Ratio of valid blocks after ten reads

do j = 1,340

do i = 1,340

temp= cO*vxo(i, j) + dty2*(vxo(i-l, j)+vxo(i+l, j))+dtx2*(vxo (i, j+l)+vxo(i, j-l)) -dtx*(po(i, j)-(po(i, j-l)) -cl

temp = temp * ivx(i, j)

vxn(i, j) = temp

temp = cO*vyo(i, j)+dty2*(vyo (i-l, j)+vyo(i+l, j))+dtx2*(vyo(i, j+l)+vyo(i, j-l)) -dty*(po(i-l, j)- po(i, j))-c2

t emp = temp * ivy(i, j)

vyn(i, j) = temp

enddo

enddo

Figure 3: 2D Jacobi loop nest

block size 8 12 16 20 24
Blocked data ref. 4054635 3818480 3734266 3655908 3 618925

Ideal execution time 5867338 4961618 4627352 4309654 4157018
BI & co data ref. 4543841 4141926 4001572 3862082 3794911

Ideal execution time 6341012 5237272 4838252 4463504 4285230

Table 4: Statistics on 120*120 blocked and blocked & copied matrix multiplications for different block sizes
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